Let the 11 consecutive natural numbers be
$1, 2, 3, \dots, 11.$
Total ways to choose any 3 numbers = $\displaystyle \binom{11}{3} = 165.$
Now, we need to count the number of 3-number selections that can form an arithmetic progression (A.P.) with positive common difference.
For an A.P., let the middle term be $a$ and common difference be $d>0$.
Then the three terms are:
$(a-d,\ a,\ a+d)$
These must all lie between $1$ and $11$.
That means
$1 \le a-d$ and $a+d \le 11$
⟹ $d \le \min(a-1,\ 11-a)$
Now we count possible values of $d$ for each $a$:
| $a$ | $\min(a-1,\ 11-a)$ | Possible $d$ values |
| 1 | 0 | – |
| 2 | 1 | 1 |
| 3 | 2 | 1,2 |
| 4 | 3 | 1,2,3 |
| 5 | 4 | 1,2,3,4 |
| 6 | 5 | 1,2,3,4,5 |
| 7 | 4 | 1,2,3,4 |
| 8 | 3 | 1,2,3 |
| 9 | 2 | 1,2 |
| 10 | 1 | 1 |
| 11 | 0 | – |
Total = $1 + 2 + 3 + 4 + 5 + 4 + 3 + 2 + 1 = 25.$
Hence, number of favorable triplets = $25.$
Therefore,
$\displaystyle P = \frac{25}{165} = \frac{5}{33}.$
Final Answer: $\boxed{\dfrac{5}{33}}$