Let X be a random variable such that the probability function of a distribution is given by $P(X = 0) = {1 \over 2},P(X = j) = {1 \over {{3^j}}}(j = 1,2,3,...,\infty )$. Then the mean of the distribution and P(X is positive and even) respectively are :
Let y = y(x) be the solution of the differential equation xdy = (y + x3 cosx)dx with y($\pi$) = 0, then $y\left( {{\pi \over 2}} \right)$ is equal to :
Let $\overrightarrow a = \widehat i + \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + 2\widehat j + 3\widehat k$. Then the vector product $\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\left( {\overrightarrow a \times \left( {\left( {\overrightarrow a - \overrightarrow b } \right) \times \overrightarrow b } \right)} \right) \times \overrightarrow b } \right)$ is equal to :
The value of the definite integral$ \int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{dx} \over {(1 + {e^{x\cos x}})({{\sin }^4}x + {{\cos }^4}x)}}} $ is equal to :
Let C be the set of all complex numbers. Let ${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $ ${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $ and ${S_3} = \{ z \in C||z - \overline z | \ge 8\} $. Then the number of elements in ${S_1} \cap {S_2} \cap {S_3}$ is equal to :