JEE MAIN Complex Number Previous Year Questions (PYQs) – Page 1 of 13

JEE MAIN Complex Number Previous Year Questions (PYQs) – Page 1 of 13

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The region represented by {z = x + iy $ \in $ C : |z| – Re(z) $ \le $ 1} is also given by the inequality :{z = x + iy $ \in $ C : |z| – Re(z) $ \le $ 1}

1
2
3
4

logo

Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation $(\overline{z})^2 + |z| = 0,\; z \in \mathbb{C}$. Then $4(\alpha^2 + \beta^2)$ is equal to:

1
2
3
4

logo

Let $z = \left(\dfrac{\sqrt{3}}{2} + \dfrac{i}{2}\right)^5 + \left(\dfrac{\sqrt{3}}{2} - \dfrac{i}{2}\right)^5.$ If $R(z)$ and $I(z)$ respectively denote the real and imaginary parts of $z$, then :

1
2
3
4

logo

If $z = x+iy$ satisfies $|z|-2=0$ and $|z-i|-|z+5i|=0$, then :

1
2
3
4

logo

The number of complex numbers $z$ satisfying $|z|=1$ and $\left|\dfrac{z}{\overline{z}}+\dfrac{\overline{z}}{z}\right|=1$ is:

1
2
3
4

logo

Let C be the set of all complex numbers. Let ${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $ ${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $ and ${S_3} = \{ z \in C||z - \overline z | \ge 8\} $. Then the number of elements in ${S_1} \cap {S_2} \cap {S_3}$ is equal to :

1
2
3
4

logo

Let z $ \in $ C with Im(z) = 10 and it satisfies ${{2z - n} \over {2z + n}}$ = 2i - 1 for some natural number n. Then :

1
2
3
4

logo

Let the product of $\omega_1=(8+i)\sin\theta+(7+4i)\cos\theta$ and $\omega_2=(1+8i)\sin\theta+(4+7i)\cos\theta$ be $\alpha+i\beta$, where $i=\sqrt{-1}$. Let $p$ and $q$ be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $p+q$ is equal to:

1
2
3
4

logo

Let $a,b$ be two real numbers such that $ab<0$. If the complex number $\dfrac{1+ai}{\,b+i\,}$ is of unit modulus and $a+ib$ lies on the circle $|z-1|=|2z|$, then a possible value of $\dfrac{1+[a]}{4b}$, where $[\,\cdot\,]$ is the greatest integer function, is:

1
2
3
4

logo

If $z$ is a complex number such that $|z|\ge 2$, then the minimum value of $\left|z+\dfrac{1}{2}\right|$ :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...