The region represented by {z = x + iy $ \in $ C : |z| – Re(z) $ \le $ 1} is also given by the inequality :{z = x + iy $ \in $ C : |z| – Re(z) $ \le $ 1}
Let $\alpha$ and $\beta$ be the sum and the product of all the non-zero solutions of the equation
$(\overline{z})^2 + |z| = 0,\; z \in \mathbb{C}$.
Then $4(\alpha^2 + \beta^2)$ is equal to:
Let $z = \left(\dfrac{\sqrt{3}}{2} + \dfrac{i}{2}\right)^5 + \left(\dfrac{\sqrt{3}}{2} - \dfrac{i}{2}\right)^5.$
If $R(z)$ and $I(z)$ respectively denote the real and imaginary parts of $z$, then :
Let C be the set of all complex numbers. Let ${S_1} = \{ z \in C||z - 3 - 2i{|^2} = 8\} $ ${S_2} = \{ z \in C|{\mathop{\rm Re}\nolimits} (z) \ge 5\} $ and ${S_3} = \{ z \in C||z - \overline z | \ge 8\} $. Then the number of elements in ${S_1} \cap {S_2} \cap {S_3}$ is equal to :
Let the product of $\omega_1=(8+i)\sin\theta+(7+4i)\cos\theta$ and $\omega_2=(1+8i)\sin\theta+(4+7i)\cos\theta$ be $\alpha+i\beta$, where $i=\sqrt{-1}$. Let $p$ and $q$ be the maximum and the minimum values of $\alpha+\beta$ respectively. Then $p+q$ is equal to:
Let $a,b$ be two real numbers such that $ab<0$. If the complex number $\dfrac{1+ai}{\,b+i\,}$ is of unit modulus and $a+ib$ lies on the circle $|z-1|=|2z|$, then a possible value of $\dfrac{1+[a]}{4b}$, where $[\,\cdot\,]$ is the greatest integer function, is: