Let \; f:\mathbb{R}\to\mathbb{R} \text{ be defined as}
\[
f(x) =
\begin{cases}
\dfrac{\sin\!\big((a+1)x\big)+\sin 2x}{2x}, & x<0 \\[8pt]
b, & x=0 \\[8pt]
\dfrac{\sqrt{x+bx^{3}}-\sqrt{x}}{b\,x^{5/2}}, & x>0
\end{cases}
\]
If f is continuous at x = 0, then the value of a + b is equal to :
Let a function f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {\sin x - {e^x}} & {if} & {x \le 0} \cr {a + [ - x]} & {if} & {0 < x < 1} \cr {2x - b} & {if} & {x \ge 1} \cr } } \right.$ where [ x ] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:
Let f : R $ \to $ R be a function defined as
$f(x) = \left\{ {\matrix{
5 & ; & {x \le 1} \cr
{a + bx} & ; & {1 < x < 3} \cr
{b + 5x} & ; & {3 \le x < 5} \cr
{30} & ; & {x \ge 5} \cr
} } \right.$
Then, f is
Let $\quad f(x)= \begin{cases}(1+a x)^{1 / x} & , x<0 \\ 1+b, & x=0 \\ \frac{(x+4)^{1 / 2}-2}{(x+c)^{1 / 3}-2}, & x>0\end{cases}$ be continuous at $x=0$. Then $e^a b c$ is equal to:
Let $f:\mathbf{R}\rightarrow\mathbf{R}$ be defined as
$
f(x)=
\begin{cases}
\dfrac{a - b\cos 2x}{x^2}, & x < 0, \\[6pt]
x^2 + cx + 2, & 0 \le x \le 1, \\[6pt]
2x + 1, & x > 1.
\end{cases}
$
If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is **not differentiable**,
then $m + a + b + c$ equals :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{{x^3}} \over {{{(1 - \cos 2x)}^2}}}{{\log }_e}\left( {{{1 + 2x{e^{ - 2x}}} \over {{{(1 - x{e^{ - x}})}^2}}}} \right),} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ If f is continuous at x = 0, then $\alpha$ is equal to :
Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$ where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $\lambda$ + $\mu$ is equal to :