JEE MAIN Continuity Previous Year Questions (PYQs) – Page 3 of 4

JEE MAIN Continuity Previous Year Questions (PYQs) – Page 3 of 4

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The value of k for which the function

$f\left( x \right) = \left\{ {\matrix{ {{{\left( {{4 \over 5}} \right)}^{{{\tan \,4x} \over {\tan \,5x}}}}\,\,,} & {0 < x < {\pi \over 2}} \cr {k + {2 \over 5}\,\,\,,} & {x = {\pi \over 2}} \cr } } \right.$

is continuous at x = ${\pi \over 2},$ is :

1
2
3
4

logo

Let \; f:\mathbb{R}\to\mathbb{R} \text{ be defined as} \[ f(x) = \begin{cases} \dfrac{\sin\!\big((a+1)x\big)+\sin 2x}{2x}, & x<0 \\[8pt] b, & x=0 \\[8pt] \dfrac{\sqrt{x+bx^{3}}-\sqrt{x}}{b\,x^{5/2}}, & x>0 \end{cases} \] If f is continuous at x = 0, then the value of a + b is equal to :

1
2
3
4

logo

If the function $f(x) = \left\{ {\matrix{ {{1 \over x}{{\log }_e}\left( {{{1 + {x \over a}} \over {1 - {x \over b}}}} \right)} & , & {x < 0} \cr k & , & {x = 0} \cr {{{{{\cos }^2}x - {{\sin }^2}x - 1} \over {\sqrt {{x^2} + 1} - 1}}} & , & {x > 0} \cr } } \right.$ is continuous at x = 0, then ${1 \over a} + {1 \over b} + {4 \over k}$ is equal to :

1
2
3
4

logo

Let a function f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {\sin x - {e^x}} & {if} & {x \le 0} \cr {a + [ - x]} & {if} & {0 < x < 1} \cr {2x - b} & {if} & {x \ge 1} \cr } } \right.$ where [ x ] is the greatest integer less than or equal to x. If f is continuous on R, then (a + b) is equal to:

1
2
3
4

logo

Let f : R $ \to $ R be a function defined as
$f(x) = \left\{ {\matrix{ 5 & ; & {x \le 1} \cr {a + bx} & ; & {1 < x < 3} \cr {b + 5x} & ; & {3 \le x < 5} \cr {30} & ; & {x \ge 5} \cr } } \right.$ Then, f is

1
2
3
4

logo

Let $\quad f(x)= \begin{cases}(1+a x)^{1 / x} & , x<0 \\ 1+b, & x=0 \\ \frac{(x+4)^{1 / 2}-2}{(x+c)^{1 / 3}-2}, & x>0\end{cases}$ be continuous at $x=0$. Then $e^a b c$ is equal to:

1
2
3
4

logo

Let $f:\mathbf{R}\rightarrow\mathbf{R}$ be defined as $ f(x)= \begin{cases} \dfrac{a - b\cos 2x}{x^2}, & x < 0, \\[6pt] x^2 + cx + 2, & 0 \le x \le 1, \\[6pt] 2x + 1, & x > 1. \end{cases} $ If $f$ is continuous everywhere in $\mathbf{R}$ and $m$ is the number of points where $f$ is **not differentiable**, then $m + a + b + c$ equals :

1
2
3
4

logo

If$f(x) = \left\{ {\matrix{ {{{\sin (p + 1)x + \sin x} \over x}} & {,x < 0} \cr q & {,x = 0} \cr {{{\sqrt {x + {x^2}} - \sqrt x } \over {{x^{{\raise0.5ex\hbox{$\scriptstyle 3$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 2$}}}}}}} & {,x > 0} \cr } } \right.$
is continuous at x = 0, then the ordered pair (p, q) is equal to

1
2
3
4

logo

Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{{x^3}} \over {{{(1 - \cos 2x)}^2}}}{{\log }_e}\left( {{{1 + 2x{e^{ - 2x}}} \over {{{(1 - x{e^{ - x}})}^2}}}} \right),} & {x \ne 0} \cr {\alpha ,} & {x = 0} \cr } } \right.$ If f is continuous at x = 0, then $\alpha$ is equal to :

1
2
3
4

logo

Let f : R $\to$ R be defined as $f(x) = \left\{ {\matrix{ {{{\lambda \left| {{x^2} - 5x + 6} \right|} \over {\mu (5x - {x^2} - 6)}},} & {x < 2} \cr {{e^{{{\tan (x - 2)} \over {x - [x]}}}},} & {x > 2} \cr {\mu ,} & {x = 2} \cr } } \right.$ where [x] is the greatest integer is than or equal to x. If f is continuous at x = 2, then $\lambda$ + $\mu$ is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...