JEE MAIN Continuity Previous Year Questions (PYQs) – Page 1 of 4

JEE MAIN Continuity Previous Year Questions (PYQs) – Page 1 of 4

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $f:\mathbb{R}\to\mathbb{R}$ be a function given by $ f(x)= \begin{cases} \dfrac{1-\cos 2x}{x^2}, & x<0,\\[6pt] \alpha, & x=0,\\[6pt] \dfrac{\beta\sqrt{\,1-\cos x\,}}{x}, & x>0, \end{cases} $ where $\alpha,\beta\in\mathbb{R}$. If $f$ is continuous at $x=0$, then $\alpha^2+\beta^2$ is equal to:

1
2
3
4

logo

If the function $ f(x)= \begin{cases} \dfrac{7^{x}-9^{x}-8^{x}+1}{\sqrt{2}-\sqrt{1+\cos^{2}x}}, & x\neq0,\\[6pt] a\log_{e}2\log_{e}3, & x=0 \end{cases} $ is continuous at $x=0$, then the value of $a^{2}$ is equal to:

1
2
3
4

logo

Let $f:\left( { - {\pi \over 4},{\pi \over 4}} \right) \to R$ be defined as $f(x) = \left\{ {\matrix{ {{{(1 + |\sin x|)}^{{{3a} \over {|\sin x|}}}}} & , & { - {\pi \over 4} < x < 0} \cr b & , & {x = 0} \cr {{e^{\cot 4x/\cot 2x}}} & , & {0 < x < {\pi \over 4}} \cr } } \right.$ If f is continuous at x = 0, then the value of 6a + b2 is equal to :

1
2
3
4

logo

Consider the function $ f(x)= \begin{cases} \dfrac{a\,(7x-12-x^{2})}{\,b\,\lfloor x^{2}-7x+12\rfloor\,}, & x<3,\\[6pt] \dfrac{\sin(x-3)}{2^{\,x-1}}, & x>3,\\[6pt] b, & x=3, \end{cases} $ where $\lfloor x\rfloor$ denotes the greatest integer $\le x$. If $S$ denotes the set of all ordered pairs $(a,b)$ such that $f(x)$ is continuous at $x=3$, then the number of elements in $S$ is:

1
2
3
4

logo

Let $f:[-1,2]\to\mathbb{R}$ be given by $f(x)=2x^{2}+x+\lfloor x^{2}\rfloor-\lfloor x\rfloor$, where $\lfloor t\rfloor$ denotes the greatest integer $\le t$. The number of points where $f$ is not continuous is:

1
2
3
4

logo

Let f(x) = $\left\{ {\matrix{ {{{\left( {x - 1} \right)}^{{1 \over {2 - x}}}},} & {x > 1,x \ne 2} \cr {k\,\,\,\,\,\,\,\,\,\,\,\,\,\,} & {,x = 2} \cr } } \right.$

Thevaue of k for which f s continuous at x = 2 is :

1
2
3
4

logo

The function $f : \mathbb{R} \to \mathbb{R}$ defined by $$ f(x) = \lim_{n \to \infty} \frac{\cos(2 \pi x) - x^{2n} \sin(x-1)}{1 + x^{2n+1} - x^{2n}} $$ is continuous for all $x$ in :

1
2
3
4

logo

Let $[x]$ denote the greatest integer function, and let $m$ and $n$ respectively be the numbers of the points where the function $f(x) = [x] + |x - 2|$, $-2 < x < 3$, is not continuous and not differentiable. Then $m + n$ is equal to:

1
2
3
4

logo

$\text { If } f(x)=\left\{\begin{array}{ll} x^3 \sin \left(\frac{1}{x}\right), & x \neq 0 \\ 0 & , x=0 \end{array}\right. \text {, then }$

1
2
3
4

logo

If the function $f$ defined as $f(x) = \dfrac{1}{x} - \dfrac{kx - 1}{e^{2x} - 1}, ; x \ne 0$, is continuous at $x = 0$, then the ordered pair $(k, f(0))$ is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...