JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 10 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 10 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

$\int\limits_{ - \pi }^\pi {\left| {\pi - \left| x \right|} \right|dx} $ is equal to :

1
2
3
4

logo

Let $\int_\limits\alpha^{\log _e 4} \frac{\mathrm{d} x}{\sqrt{\mathrm{e}^x-1}}=\frac{\pi}{6}$. Then $\mathrm{e}^\alpha$ and $\mathrm{e}^{-\alpha}$ are the roots of the equation :

1
2
3
4

logo

If $\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\dfrac{x^2\cos x}{1+x^2}+\dfrac{1+\sin^2 x}{1+e^{\sin 2x}}\right)dx = \dfrac{\pi}{4}(\pi+a)-2$, then the value of $a$ is:

1
2
3
4

logo

$a$ and $b$ be real constants such that the function $f$ defined by $f(x)=\left\{\begin{array}{ll}x^2+3 x+a & , x \leq 1 \\ b x+2 & , x>1\end{array}\right.$ be differentiable on $\mathbb{R}$. Then, the value of $\int_\limits{-2}^2 f(x) d x$ equals

1
2
3
4

logo

The integral $\int_{{\pi \over {12}}}^{{\pi \over 4}} {\,\,{{8\cos 2x} \over {{{\left( {\tan x + \cot x} \right)}^3}}}} \,dx$ equals :

1
2
3
4

logo

Let $\mathrm{f}: \mathbb{R} \rightarrow \mathbb{R}$ be defined as $f(x)=a e^{2 x}+b e^x+c x$. If $f(0)=-1, f^{\prime}\left(\log _e 2\right)=21$ and $\int_0^{\log _e 4}(f(x)-c x) d x=\frac{39}{2}$, then the value of $|a+b+c|$

1
2
3
4

logo

Let f : R $ \to $ R be defined as f(x) = e$-$xsinx. If F : [0, 1] $ \to $ R is a differentiable function with that F(x) = $\int_0^x {f(t)dt} $, then the value of $\int_0^1 {(F'(x) + f(x)){e^x}dx} $ lies in the interval

1
2
3
4

logo

$ \text{If } \displaystyle \int_{0}^{10}\frac{[\sin 2\pi x]}{e^{,x-[x]}},dx ;=; \alpha e^{-1}+\beta e^{-1/2}+\gamma,\ \text{ where } \alpha,\beta,\gamma \text{ are integers and } [x] \text{ is the greatest integer } \le x,\ \text{then the value of } \alpha+\beta+\gamma \text{ is:} $

1
2
3
4

logo

Let [t] denote the greatest integer less than or equal to t. Then, the value of the integral $\int\limits_0^1 {[ - 8{x^2} + 6x - 1]dx} $ is equal to :

1
2
3
4

logo

Evaluate the integral $ \displaystyle \int_{0}^{\infty}\frac{6}{e^{3x}+6e^{2x}+11e^{x}+6},dx $ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...