JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 15 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 15 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $g(t) = \int_{ - \pi /2}^{\pi /2} {\cos \left( {{\pi \over 4}t + f(x)} \right)} dx$, where $f(x) = {\log _e}\left( {x + \sqrt {{x^2} + 1} } \right),x \in R$. Then which one of the following is correct?

1
2
3
4

logo

Let for $f(x)=7 \tan ^8 x+7 \tan ^6 x-3 \tan ^4 x-3 \tan ^2 x, \quad \mathrm{I}_1=\int_0^{\pi / 4} f(x) \mathrm{d} x$ and $\mathrm{I}_2=\int_0^{\pi / 4} x f(x) \mathrm{d} x$. Then $7 \mathrm{I}_1+12 \mathrm{I}_2$ is equal to :

1
2
3
4

logo

If $\int\limits_0^{100\pi } {{{{{\sin }^2}x} \over {{e^{\left( {{x \over \pi } - \left[ {{x \over \pi }} \right]} \right)}}}}dx = {{\alpha {\pi ^3}} \over {1 + 4{\pi ^2}}},\alpha \in R} $ where [x] is the greatest integer less than or equal to x, then the value of $\alpha$ is :

1
2
3
4

logo

If $\displaystyle \int_{0}^{\pi/3}\!\cos^{4}x\,dx=a\pi+b\sqrt{3}$, where $a$ and $b$ are rational numbers, then $9a+8b$ is equal to:

1
2
3
4

logo

Let $y=y(x)$ be the solution of the differential equation $\dfrac{dy}{dx}+3\tan^2 x,y+3y=\sec^2 x$, $y(0)=\dfrac{1}{3}+e^3$. Then $y!\left(\dfrac{\pi}{4}\right)$ is equal to:

1
2
3
4

logo

Let $\alpha\in(0,1)$ and $\beta=\log_{e}(1-\alpha)$. Let $P_{n}(x)=x+\dfrac{x^{2}}{2}+\dfrac{x^{3}}{3}+\cdots+\dfrac{x^{n}}{n},\ x\in(0,1)$. Then the integral $\displaystyle \int_{0}^{\alpha}\frac{t^{50}}{1-t}\,dt$ is equal to

1
2
3
4

logo

$\displaystyle \int_{\pi/6}^{\pi/3}\sec^{\tfrac{2}{3}}x;\csc^{\tfrac{4}{3}}x,dx$ is equal to:

1
2
3
4

logo

The value of the integral

$\int\limits_4^{10} {{{\left[ {{x^2}} \right]dx} \over {\left[ {{x^2} - 28x + 196} \right] + \left[ {{x^2}} \right]}}} ,$

where [x] denotes the greatest integer less than or equal to x, is :

1
2
3
4

logo

The value of $\int\limits_{{{ - \pi } \over 2}}^{{\pi \over 2}} {{1 \over {1 + {e^{\sin x}}}}dx} $ is:

1
2
3
4

logo

The integral $\displaystyle \int_{0}^{\pi}\frac{8x,dx}{4\cos^{2}x+\sin^{2}x}$ is equal to

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...