Qus : 151
4
$ \text{The value of } \displaystyle \int_{\pi/3}^{\pi/2} \frac{2+3\sin x}{\sin x\,(1+\cos x)}\,dx \text{ is equal to:} $
1
$ \dfrac{10}{3}-\sqrt{3}+\log_{e}\sqrt{3} $
2
$ \dfrac{7}{2}-\sqrt{3}-\log_{e}\sqrt{3} $
3
$ \dfrac{10}{3}-\sqrt{3}-\log_{e}\sqrt{3} $
4
$ -2+3\sqrt{3}+\log_{e}\sqrt{3} $
✓ Solution
Qus : 152
3
The value of the definite integral $\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}} $ is :
✓ Solution
Qus : 153
3
The value of $\int_{0}^{1} (2x^{3} - 3x^{2} - x + 1)^{\frac{1}{3}} \, dx$ is equal to:
✓ Solution
Qus : 154
4
The area (in sq. units) of the region, given by the set $\{ (x,y) \in R \times R|x \ge 0,2{x^2} \le y \le 4 - 2x\} $ is :
✓ Solution
Qus : 155
2
Let $[t]$ denote the greatest integer less than or equal to $t$.
Then the value of the integral
$\int_{-3}^{101} \left( [\sin(\pi x)] + e^{[\cos(2\pi x)]} \right) dx$ is equal to
✓ Solution
Qus : 156
2
Let $\alpha>0$. If $\displaystyle \int_{0}^{\alpha}\frac{x}{\sqrt{x+\alpha}-\sqrt{x}}\,dx=\dfrac{16+20\sqrt{2}}{15}$, then $\alpha$ is equal to:
✓ Solution
Qus : 157
1
If $\displaystyle \int_{0}^{\pi/2} \dfrac{\cot x}{\cot x + \cos \csc x} , dx = m(\pi + n)$, then $m \cdot n$ is equal to
✓ Solution
Qus : 158
1
Let
$f(x)=
\begin{cases}
-2, & -2 \le x \le 0,\\[4pt]
x-2, & 0 < x \le 2,
\end{cases}$
and $h(x)=f(|x|)+|f(x)|.$
Then $\displaystyle \int_{-2}^{2} h(x)\,dx$ is equal to:
✓ Solution
Qus : 159
1
The integral $\displaystyle \int_{2}^{4}\dfrac{\log x^{2}}{\log x^{2}+\log(36-12x+x^{2})}\,dx$ is equal to :
✓ Solution
Qus : 160
3
If $f(x) =
\begin{cases}
\int_{0}^{x} \left( 5 + |1 - t| \right) dt, & x > 2 \\
5x + 1, & x \leq 2
\end{cases}$, then
1
$f(x)$ is not continuous at $x = 2$
2
$f(x)$ is everywhere differentiable
3
$f(x)$ is continuous but not differentiable at $x = 2$
4
$f(x)$ is not differentiable at $x = 1$
✓ Solution