JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 16 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 16 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

$ \text{The value of } \displaystyle \int_{\pi/3}^{\pi/2} \frac{2+3\sin x}{\sin x\,(1+\cos x)}\,dx \text{ is equal to:} $

1
2
3
4

logo

The value of the definite integral $\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}} $ is :

1
2
3
4

logo

The value of $\int_{0}^{1} (2x^{3} - 3x^{2} - x + 1)^{\frac{1}{3}} \, dx$ is equal to:

1
2
3
4

logo

The area (in sq. units) of the region, given by the set $\{ (x,y) \in R \times R|x \ge 0,2{x^2} \le y \le 4 - 2x\} $ is :

1
2
3
4

logo

Let $[t]$ denote the greatest integer less than or equal to $t$.  
Then the value of the integral  
$\int_{-3}^{101} \left( [\sin(\pi x)] + e^{[\cos(2\pi x)]} \right) dx$ is equal to  

1
2
3
4

logo

Let $\alpha>0$. If $\displaystyle \int_{0}^{\alpha}\frac{x}{\sqrt{x+\alpha}-\sqrt{x}}\,dx=\dfrac{16+20\sqrt{2}}{15}$, then $\alpha$ is equal to:

1
2
3
4

logo

If $\displaystyle \int_{0}^{\pi/2} \dfrac{\cot x}{\cot x + \cos \csc x} , dx = m(\pi + n)$, then $m \cdot n$ is equal to

1
2
3
4

logo

Let $f(x)= \begin{cases} -2, & -2 \le x \le 0,\\[4pt] x-2, & 0 < x \le 2, \end{cases}$ and $h(x)=f(|x|)+|f(x)|.$ Then $\displaystyle \int_{-2}^{2} h(x)\,dx$ is equal to:

1
2
3
4

logo

The integral $\displaystyle \int_{2}^{4}\dfrac{\log x^{2}}{\log x^{2}+\log(36-12x+x^{2})}\,dx$ is equal to :

1
2
3
4

logo

If $f(x) = \begin{cases} \int_{0}^{x} \left( 5 + |1 - t| \right) dt, & x > 2 \\ 5x + 1, & x \leq 2 \end{cases}$, then

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...