JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 17 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 17 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The value of $\displaystyle \int_{-1}^{1}\frac{(1+\sqrt{|x|}-x)e^{x}+(\sqrt{|x|}-x)e^{-x}}{e^{x}+e^{-x}},dx$ is equal to

1
2
3
4

logo

Let f : R $ \to $R be a continuously differentiable function such that f(2) = 6 and f'(2) = ${1 \over {48}}$. If $\int\limits_6^{f\left( x \right)} {4{t^3}} dt$ = (x - 2)g(x), then $\mathop {\lim }\limits_{x \to 2} g\left( x \right)$ is equal to :

1
2
3
4

logo

The value of the integral $\int\limits_{ - 1}^1 {\log \left( {x + \sqrt {{x^2} + 1} } \right)dx} $ is :

1
2
3
4

logo

The value of $\int_{e^2}^{e^4} \frac{1}{x}\left(\frac{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}}{e^{\left(\left(\log _e x\right)^2+1\right)^{-1}}+e^{\left(\left(6-\log _e x\right)^2+1\right)^{-1}}}\right) d x$ is

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...