Let \(f(x)\) be a function satisfying \(f(x)+f(\pi-x)=\pi^{2}\), \(\forall x\in\mathbb{R}\).
Then \(\displaystyle \int_{0}^{\pi} f(x)\sin x\,dx\) is equal to:
If the value of the integral $\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta } $, where $\alpha$, $\beta$ $\in$ R, 5$\alpha$ + 6$\beta$ = 0, and [x] denotes the greatest integer less than or equal to x; then the value of ($\alpha$ + $\beta$)2 is equal to :
Let $\beta(m,n)=\displaystyle\int_{0}^{1}x^{m-1}(1-x)^{,n-1},dx,; m,n>0$. If $\displaystyle\int_{0}^{1}(1-x^{10})^{20},dx=a\times \beta(b,c)$, then $100(a+b+c)$ equals:
If $I_1=\displaystyle\int_{0}^{1} e^{-x}\cos^{2}x,dx$;
$I_2=\displaystyle\int_{0}^{1} e^{-x^{2}}\cos^{2}x,dx$ and
$I_3=\displaystyle\int_{0}^{1} e^{-x^{3}},dx$; then
$ \text{Let } \alpha,\beta,\gamma \text{ be the three roots of } x^{3}+bx+c=0. \text{ If } \beta\gamma=1=-\alpha,\ \text{then } b^{3}+2c^{3}-3\alpha^{3}-6\beta^{3}-8\gamma^{3} \text{ is equal to:} $