JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 4 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 4 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let \(f(x)\) be a function satisfying \(f(x)+f(\pi-x)=\pi^{2}\), \(\forall x\in\mathbb{R}\). Then \(\displaystyle \int_{0}^{\pi} f(x)\sin x\,dx\) is equal to:

1
2
3
4

logo

The value of the definite integral $\int\limits_{\pi /24}^{5\pi /24} {{{dx} \over {1 + \root 3 \of {\tan 2x} }}} $ is :

1
2
3
4

logo

The value of $\int\limits_{{{ - 1} \over {\sqrt 2 }}}^{{1 \over {\sqrt 2 }}} {{{\left( {{{\left( {{{x + 1} \over {x - 1}}} \right)}^2} + {{\left( {{{x - 1} \over {x + 1}}} \right)}^2} - 2} \right)}^{{1 \over 2}}}dx} $ is :

1
2
3
4

logo

The area (in sq. units) of the region, given by the set $\{ (x,y) \in R \times R|x \ge 0,2{x^2} \le y \le 4 - 2x\} $

1
2
3
4

logo

The integral $\displaystyle \int_{\pi/6}^{\pi/4}\frac{dx}{\sin 2x\,(\tan^{5}x+\cot^{5}x)}$ equals :

1
2
3
4

logo

If the value of the integral $\int\limits_0^5 {{{x + [x]} \over {{e^{x - [x]}}}}dx = \alpha {e^{ - 1}} + \beta } $, where $\alpha$, $\beta$ $\in$ R, 5$\alpha$ + 6$\beta$ = 0, and [x] denotes the greatest integer less than or equal to x; then the value of ($\alpha$ + $\beta$)2 is equal to :

1
2
3
4

logo

Let $\beta(m,n)=\displaystyle\int_{0}^{1}x^{m-1}(1-x)^{,n-1},dx,; m,n>0$. If $\displaystyle\int_{0}^{1}(1-x^{10})^{20},dx=a\times \beta(b,c)$, then $100(a+b+c)$ equals:

1
2
3
4

logo

The value of the integral $\int\limits_{ - \pi /2}^{\pi /2} {{{dx} \over {(1 + {e^x})({{\sin }^6}x + {{\cos }^6}x)}}} $ is equal to


1
2
3
4

logo

If $I_1=\displaystyle\int_{0}^{1} e^{-x}\cos^{2}x,dx$; $I_2=\displaystyle\int_{0}^{1} e^{-x^{2}}\cos^{2}x,dx$ and $I_3=\displaystyle\int_{0}^{1} e^{-x^{3}},dx$; then

1
2
3
4

logo

$ \text{Let } \alpha,\beta,\gamma \text{ be the three roots of } x^{3}+bx+c=0. \text{ If } \beta\gamma=1=-\alpha,\ \text{then } b^{3}+2c^{3}-3\alpha^{3}-6\beta^{3}-8\gamma^{3} \text{ is equal to:} $

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...