JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 6 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 6 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The value of $\displaystyle \int_{-\pi/2}^{\pi/2} \frac{\sin^{2}x}{1+2^{x}},dx$ is :

1
2
3
4

logo

The integral $\int_{0}^{\tfrac{\pi}{2}} \dfrac{1}{3 + 2 \sin x + \cos x} , dx$ is equal to :

1
2
3
4

logo

The function $I(x)=\int e^{\sin^{2}x},(\cos x\sin 2x-\sin x),dx$ with $I(0)=1$. Then $I!\left(\dfrac{\pi}{3}\right)$ is equal to:

1
2
3
4

logo

If $f(\alpha)=\int\limits_{1}^{\alpha} \frac{\log _{10} \mathrm{t}}{1+\mathrm{t}} \mathrm{dt}, \alpha>0$ then $f\left(\mathrm{e}^{3}\right)+f\left(\mathrm{e}^{-3}\right)$ is equal to :

1
2
3
4

logo

Let, for some function $y=f(x)$, $\displaystyle \int_{0}^{x} t,f(t),dt = x^{2}f(x)$ for $x>0$ and $f(2)=3$. Then $f(6)$ is equal to

1
2
3
4

logo

The value of the integral $\displaystyle \int_{0}^{1} \frac{\sqrt{x}\,dx}{(1+x)(1+3x)(3+x)}$ is:

1
2
3
4

logo

For $x\in\left(-\dfrac{\pi}{2},\dfrac{\pi}{2}\right)$, if $y(x)=\displaystyle\int \frac{\csc x+\sin x}{\csc x\sec x+\tan x\sin^2 x}\,dx$, and $\displaystyle\lim_{x\to \left(\frac{\pi}{2}\right)} y(x)=0$, then $y\!\left(\dfrac{\pi}{4}\right)$ is equal to:

1
2
3
4

logo

$\displaystyle \int_{0}^{\pi/4}\frac{\cos^{2}x,\sin^{2}x}{\big(\cos^{3}x+\sin^{3}x\big)^{2}},dx$ is equal to:

1
2
3
4

logo

If ${b_n} = \int_0^{{\pi \over 2}} {{{{{\cos }^2}nx} \over {\sin x}}dx,\,n \in N} $, then

1
2
3
4

logo

The integral $\int\limits_1^e {\left\{ {{{\left( {{x \over e}} \right)}^{2x}} - {{\left( {{e \over x}} \right)}^x}} \right\}} \,$ loge x dx is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...