JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 8 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 8 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If $\int {{1 \over x}\sqrt {{{1 - x} \over {1 + x}}} dx = g(x) + c} $, $g(1) = 0$, then $g\left( {{1 \over 2}} \right)$ is equal to :

1
2
3
4

logo

If $\displaystyle \int \frac{1}{a^{2}\sin^{2}x+b^{2}\cos^{2}x},dx=\frac{1}{12}\tan^{-1}(3\tan x)+\text{constant}$, then the maximum value of $a\sin x+b\cos x$ is:

1
2
3
4

logo

The value of $k\in\mathbb{N}$ for which the integral $I_n=\displaystyle\int_{0}^{1}(1-x^{k})^{n},dx,\ n\in\mathbb{N}$, satisfies $147I_{20}=148I_{21}$ is:

1
2
3
4

logo

If $f(x)=\dfrac{2-x\cos x}{2+x\cos x}$ and $g(x)=\log_e x,\ (x>0)$, then the value of the integral $\displaystyle \int_{-\pi/4}^{\pi/4} g\big(f(x)\big),dx$ is:

1
2
3
4

logo

The integral $\displaystyle \int_{-1}^{\tfrac{3}{2}} \left( |\pi^2 x \sin(\pi x)| \right) dx$ is equal to

1
2
3
4

logo

Consider the integral $I = \int_0^{10} {{{[x]{e^{[x]}}} \over {{e^{x - 1}}}}dx} $, where [x] denotes the greatest integer less than or equal to x. Then the value of I is equal to :

1
2
3
4

logo

Let $f(x)$ be a positive function and $I_{1}=\int_{-\tfrac{1}{2}}^{1} 2x,f\left(2x(1-2x)\right),dx$ and $I_{2}=\int_{-1}^{2} f\left(x(1-x)\right),dx$. Then the value of $\dfrac{I_{2}}{I_{1}}$ is equal to

1
2
3
4

logo

The integral $\displaystyle \int_{\pi/4}^{3\pi/4}\dfrac{dx}{1+\cos x}$ is equal to :

1
2
3
4

logo

The value of the integral $\int\limits_{ - 2}^2 {{{|{x^3} + x|} \over {({e^{x|x|}} + 1)}}dx} $ is equal to :

1
2
3
4

logo

If $f:\mathbb{R}\to\mathbb{R}$ is a continuous function satisfying \[ \int_{0}^{\pi/2} f(\sin 2x)\,\sin x\,dx \;+\; \alpha \int_{0}^{\pi/4} f(\cos 2x)\,\cos x\,dx \;=\; 0, \] then the value of $\alpha$ is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...