Which of the following statements is correct for the function g($\alpha$) for $\alpha$ $\in$ R such that $g(\alpha ) = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{{{\sin }^\alpha }x} \over {{{\cos }^\alpha }x + {{\sin }^\alpha }x}}dx} $
Let the function $f:[0,2]\to\mathbb{R}$ be defined as
\[
f(x)=
\begin{cases}
e^{\min\{x^2,\; x-[x]\}}, & x\in[0,1),\\[4pt]
e^{[\,x-\log_e x\,]}, & x\in[1,2],
\end{cases}
\]
where $[t]$ denotes the greatest integer less than or equal to $t$.
Then the value of the integral $\displaystyle \int_{0}^{2} x f(x)\,dx$ is:
Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=\dfrac{x}{(1+2x^{4})^{1/4}}$, and $g(x)=f(f(f(f(x))))$. Then $18\displaystyle\int_{0}^{\sqrt{2\sqrt{5}}} x^{2}g(x),dx$ is equal to:
For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if $y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$, and $\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to
Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$.
Let the tangents to the curve $y=f(x)$ at $(1,f(1))$ and $(3,f(3))$ make angles $\dfrac{\pi}{6}$ and $\dfrac{\pi}{4}$ respectively with the positive $x$-axis.
If $27\displaystyle\int_{1}^{3}\big((f'(t))^{2}+1\big)f'''(t),dt=\alpha+\beta\sqrt{3}$,
where $\alpha,\beta$ are integers, then the value of $\alpha+\beta$ equals:
Let f be a differentiable function in $\left( {0,{\pi \over 2}} \right)$. If $\int\limits_{\cos x}^1 {{t^2}\,f(t)dt = {{\sin }^3}x + \cos x} $, then ${1 \over {\sqrt 3 }}f'\left( {{1 \over {\sqrt 3 }}} \right)$ is equal to