JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 9 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 9 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

$\displaystyle \int_{\tfrac{3\sqrt{2}}{4}}^{\tfrac{3\sqrt{3}}{4}} \dfrac{48}{\sqrt{9-4x^{2}}}\,dx$ is equal to:

1
2
3
4

logo

Let $I(x)=\displaystyle\int \frac{6}{\sin^{2}x,(1-\cot x)^{2}},dx$. If $I(0)=3$, then $I!\left(\tfrac{\pi}{12}\right)$ is equal to

1
2
3
4

logo

Which of the following statements is correct for the function g($\alpha$) for $\alpha$ $\in$ R such that $g(\alpha ) = \int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{{{\sin }^\alpha }x} \over {{{\cos }^\alpha }x + {{\sin }^\alpha }x}}dx} $

1
2
3
4

logo

Let the function $f:[0,2]\to\mathbb{R}$ be defined as \[ f(x)= \begin{cases} e^{\min\{x^2,\; x-[x]\}}, & x\in[0,1),\\[4pt] e^{[\,x-\log_e x\,]}, & x\in[1,2], \end{cases} \] where $[t]$ denotes the greatest integer less than or equal to $t$. Then the value of the integral $\displaystyle \int_{0}^{2} x f(x)\,dx$ is:

1
2
3
4

logo

Let $f:\mathbb{R}\to\mathbb{R}$ be defined by $f(x)=\dfrac{x}{(1+2x^{4})^{1/4}}$, and $g(x)=f(f(f(f(x))))$. Then $18\displaystyle\int_{0}^{\sqrt{2\sqrt{5}}} x^{2}g(x),dx$ is equal to:

1
2
3
4

logo

For $x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if $y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^2 x} d x$, and $\lim _\limits{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to

1
2
3
4

logo

Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $y=f(x)$ at $(1,f(1))$ and $(3,f(3))$ make angles $\dfrac{\pi}{6}$ and $\dfrac{\pi}{4}$ respectively with the positive $x$-axis. If $27\displaystyle\int_{1}^{3}\big((f'(t))^{2}+1\big)f'''(t),dt=\alpha+\beta\sqrt{3}$, where $\alpha,\beta$ are integers, then the value of $\alpha+\beta$ equals:

1
2
3
4

logo

The area of the region in the first quadrant inside the circle $x^{2}+y^{2}=8$ and outside the parabola $y^{2}=2x$ is equal to

1
2
3
4

logo

Let f be a differentiable function in $\left( {0,{\pi \over 2}} \right)$. If $\int\limits_{\cos x}^1 {{t^2}\,f(t)dt = {{\sin }^3}x + \cos x} $, then ${1 \over {\sqrt 3 }}f'\left( {{1 \over {\sqrt 3 }}} \right)$ is equal to

1
2
3
4

logo

The integral $\int\limits_0^1 {{1 \over {{7^{\left[ {{1 \over x}} \right]}}}}dx} $, where [ . ] denotes the greatest integer function, is equal to

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...