JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 1 of 17

JEE MAIN Definite Integration Previous Year Questions (PYQs) – Page 1 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If I1 = $\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{100}}} dx$ andI2 = $\int\limits_0^1 {{{\left( {1 - {x^{50}}} \right)}^{101}}} dx$ such that I2 = $\alpha $I1then $\alpha $ equals to :

1
2
3
4

logo

Let $a \in \left(0, \dfrac{\pi}{2}\right)$ be fixed. If $\displaystyle \int \dfrac{\tan x + \tan a}{\tan x - \tan a} , dx = A(x)\cos 2a + B(x)\sin 2a + C,$ where $C$ is a constant of integration, then the functions $A(x)$ and $B(x)$ are respectively:

1
2
3
4

logo

If $I=\displaystyle\int_{0}^{\pi/2}\frac{\sin^{3/2}x}{\sin^{3/2}x+\cos^{3/2}x}\,dx$, then $\displaystyle\int_{0}^{2I}\frac{x\sin x\cos x}{\sin^{4}x+\cos^{4}x}\,dx$ equals:

1
2
3
4

logo

The value of the definite integral$ \int\limits_{ - {\pi \over 4}}^{{\pi \over 4}} {{{dx} \over {(1 + {e^{x\cos x}})({{\sin }^4}x + {{\cos }^4}x)}}} $ is equal to :

1
2
3
4

logo

Let $f(x)=\int_{0}^{x}\left(t+\sin(1-e^{t})\right)dt,\;x\in\mathbb{R}$. Then, $\displaystyle\lim_{x\to0}\dfrac{f(x)}{x^{3}}$ is equal to:

1
2
3
4

logo

The value of $\displaystyle \int_{-\pi/2}^{\pi/2} \dfrac{dx}{[x] + [\sin x] + 4}$, where $[t]$ denotes the greatest integer less than or equal to $t$, is :

1
2
3
4

logo

If the area of the bounded region $R = \left\{ {(x,y):\max \{ 0,{{\log }_e}x\} \le y \le {2^x},{1 \over 2} \le x \le 2} \right\}$ is , $\alpha {({\log _e}2)^{ - 1}} + \beta ({\log _e}2) + \gamma $, then the value of ${(\alpha + \beta - 2\lambda )^2}$ is equal to :

1
2
3
4

logo

$\int_{0}^{20\pi} (|\sin x| + |\cos x|)^{2} \, dx$ is equal to:

1
2
3
4

logo

The value of the integral $\displaystyle \int_{-\pi/4}^{\pi/4}\frac{x+\pi/4}{\,2-\cos 2x\,}\,dx$ is:

1
2
3
4

logo

$ \text{The integral } \int \dfrac{\left(1-\tfrac{1}{\sqrt{3}}\right)(\cos x-\sin x)}{1+\tfrac{2}{\sqrt{3}}\sin 2x},dx \text{ is equal to :}$

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...