3
If $x\log_e(\log_e x)-x^2+y^2=4\ (y>0)$, then $\left.\dfrac{dy}{dx}\right|_{x=e}$ is equal to :
1
2
3
4
✓Solution
1
If $x^{2} + y^{2} + \sin y = 4$, then the value of $\dfrac{d^{2}y}{dx^{2}}$ at the point $(-2,0)$ is :
✓Solution
2
For x > 1, if $(2x)^{2y}=4e^{2x-2y}$, then $\,(1+\log_e 2x)^2\,\dfrac{dy}{dx}$ is equal to :
1
4
✓Solution
3
If $\left( {a + \sqrt 2 b\cos x} \right)\left( {a - \sqrt 2 b\cos y} \right) = {a^2} - {b^2}$
where a > b > 0, then ${{dx} \over {dy}}\,\,at\left( {{\pi \over 4},{\pi \over 4}} \right)$ is :
1
2
3
4
✓Solution
2
If $e^y + xy = e$, the ordered pair $\left(\dfrac{dy}{dx}, \dfrac{d^2y}{dx^2}\right)$ at $x=0$ is equal to:
1
2
3
4
✓Solution