Let $S={(\lambda,\mu)\in\mathbb{R}\times\mathbb{R}: f(t)=(\lvert\lambda\rvert e^{\lvert t\rvert}-\mu)\cdot\sin(2\lvert t\rvert),\ t\in\mathbb{R},\text{ is a differentiable function}}$. Then $S$ is a subset of :
Let $K$ be the set of all real values of $x$ where the function $f(x)=\sin|x|-|x|+2(x-\pi)\cos|x|$ is not differentiable. Then the set $K$ is equal to:
Let $S$ be the set of all points in $(-\pi,\pi)$ at which the function
$f(x)=\min\{\sin x,\cos x\}$ is not differentiable. Then $S$ is a subset of which of the following?
$ \text{The number of points where the function } f:\mathbb{R}\to\mathbb{R},\quad
f(x)=|x-1|\cos|x-2|\sin|x-1|+(x-3),|x^{2}-5x+4|,\ \text{is NOT differentiable, is:} $
Let f, g : R $\to$ R be two real valued functions defined as $f(x) = \left\{ {\matrix{ { - |x + 3|} & , & {x < 0} \cr {{e^x}} & , & {x \ge 0} \cr } } \right.$ and $g(x) = \left\{ {\matrix{ {{x^2} + {k_1}x} & , & {x < 0} \cr {4x + {k_2}} & , & {x \ge 0} \cr } } \right.$, where k1 and k2 are real constants. If (gof) is differentiable at x = 0, then (gof) ($-$ 4) + (gof) (4) is equal to :
Let the functions f : R $ \to $ R and g : R $ \to $ R be defined as :$f(x) = \left\{ {\matrix{ {x + 2,} & {x < 0} \cr {{x^2},} & {x \ge 0} \cr } } \right.$ and $g(x) = \left\{ {\matrix{ {{x^3},} & {x < 1} \cr {3x - 2,} & {x \ge 1} \cr } } \right.$ Then, the number of points in R where (fog) (x) is NOT differentiable is equal to :