Let f(x) = loge(sin x), (0 < x < $\pi $) and g(x) = sin–1
(e–x
), (x $ \ge $ 0). If $\alpha $ is a positive real number such that
a = (fog)'($\alpha $) and b = (fog)($\alpha $), then :
If the domain of the function
$f(x)=\sqrt{\dfrac{x^{2}-25}{4-x^{2}}}+\log_{10}(x^{2}+2x-15)$
is $(-\infty,\alpha)\cup[\beta,\infty)$, then $\alpha^{2}+\beta^{3}$ is equal to:
Let [x] denote the greatest integer less than or equal to x. Then, the values of x$\in$R satisfying the equation ${[{e^x}]^2} + [{e^x} + 1] - 3 = 0$ lie in the interval :
For any real number $x$, let $[x]$ denote the largest integer less than equal to $x$. Let $f$ be a real valued function defined on the interval $[-10,10]$ by $f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$Then the value of $\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$ is :