JEE MAIN Function Previous Year Questions (PYQs) – Page 13 of 15

JEE MAIN Function Previous Year Questions (PYQs) – Page 13 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let f(x) = loge(sin x), (0 < x < $\pi $) and g(x) = sin–1 (e–x ), (x $ \ge $ 0). If $\alpha $ is a positive real number such that a = (fog)'($\alpha $) and b = (fog)($\alpha $), then :

1
2
3
4

logo

The function $f(x) = \left\{ {\matrix{ {{\pi \over 4} + {{\tan }^{ - 1}}x,} & {\left| x \right| \le 1} {{1 \over 2}\left( {\left| x \right| - 1} \right),} & {\left| x \right| > 1} } } \right.$is :

1
2
3
4

logo

Let $x=(8\sqrt{3}+13)^{13}$ and $y=(7\sqrt{2}+9)^{9}$. If $[t]$ denotes the greatest integer $\le t$, then:

1
2
3
4

logo

If the domain of the function $f(x)=\sqrt{\dfrac{x^{2}-25}{4-x^{2}}}+\log_{10}(x^{2}+2x-15)$ is $(-\infty,\alpha)\cup[\beta,\infty)$, then $\alpha^{2}+\beta^{3}$ is equal to:

1
2
3
4

logo

The number of real roots of the equation $5+\lvert 2^{x}-1\rvert=2^{x},(2^{x}-2)$ is:

1
2
3
4

logo

Let [x] denote the greatest integer less than or equal to x. Then, the values of x$\in$R satisfying the equation ${[{e^x}]^2} + [{e^x} + 1] - 3 = 0$ lie in the interval :

1
2
3
4

logo

For any real number $x$, let $[x]$ denote the largest integer less than equal to $x$. Let $f$ be a real valued function defined on the interval $[-10,10]$ by $f(x)=\left\{\begin{array}{l}x-[x], \text { if }[x] \text { is odd } \\ 1+[x]-x, \text { if }[x] \text { is even } .\end{array}\right.$Then the value of $\frac{\pi^{2}}{10} \int_{-10}^{10} f(x) \cos \pi x \,d x$ is :

1
2
3
4

logo

$ \text{If the domain of } f(x)=\dfrac{\lfloor x\rfloor}{1+x^{2}},\ \text{where } \lfloor x\rfloor \text{ is greatest integer } \le x,\ \text{is } [2,6),\ \text{then its range is:} $

1
2
3
4

logo

Let $f$ be a function such that $f(x)+3f\left(\dfrac{24}{x}\right)=4x,; x\ne0$. Then $f(3)+f(8)$ is equal to

1
2
3
4

logo

Let $A=\{x\in\mathbb{R}:\ x\ \text{is not a positive integer}\}$. Define a function $f:A\to\mathbb{R}$ as $f(x)=\dfrac{2x}{x-1}$. Then $f$ is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...