If the domain of the function
$\sin^{-1}\!\left(\dfrac{3x-22}{2x-19}\right)+\log_e\!\left(\dfrac{3x^2-8x+5}{x^2-3x-10}\right)$
is $(\alpha,\beta)$, then $3\alpha+10\beta$ is equal to:
Let $f(x)=
\begin{cases}
x^{3}-x^{2}+10x-7, & x\le 1,\\
-2x+\log_{2}(b^{2}-4), & x>1.
\end{cases}$
Then the set of all values of $b$ for which $f(x)$ has maximum value at $x=1$ is:
Let $f,g:(1,\infty)\to\mathbb{R}$ be defined as $f(x)=\dfrac{2x+3}{5x+2}$ and $g(x)=\dfrac{2-3x}{1-x}$. If the range of the function $f\circ g:[2,4]\to\mathbb{R}$ is $[\alpha,\beta]$, then $\dfrac{1}{\beta-\alpha}$ is equal to