The position of a moving car at time t is given by f(t) = at2 + bt + c, t > 0, where a, b and c are realnumbers greater than 1. Then the average speed of the car over the time interval [t1, t2] isattained at the point :
Let the domains of the functions $f(x)=\log_{4}\big(\log_{3}\big(\log_{7}\big(8-\log_{2}(x^{2}+4x+5)\big)\big)\big)$ and $g(x)=\sin^{-1}\left(\dfrac{7x+10}{x-2}\right)$ be $(\alpha,\beta)$ and $[\gamma,\delta]$, respectively. Then $\alpha^{2}+\beta^{2}+\gamma^{2}+\delta^{2}$ is equal to
If the maximum value of $a$, for which the function $f_a(x)=\tan^{-1}(2x)-3ax+7$ is non-decreasing in $\left(-\tfrac{\pi}{6},\,\tfrac{\pi}{6}\right)$, is $\bar a$, then $f_{\bar a}\!\left(\tfrac{\pi}{8}\right)$ is equal to :
If f(x + y) = f(x)f(y) and $\sum\limits_{x = 1}^\infty {f\left( x \right)} = 2$ , x, y $ \in $ N, where N is the set of all natural number, then thevalue of${{f\left( 4 \right)} \over {f\left( 2 \right)}}$ is :
Let $f(x)=3\sqrt{x-2}+\sqrt{4-x}$ be a real-valued function.
If $\alpha$ and $\beta$ are respectively the minimum and maximum values of $f$,
then $\alpha^2+2\beta^2$ is equal to:
Let f(x) = 5 – |x – 2| and g(x) = |x + 1|, x $ \in $ R. If f(x) attains maximum value at $\alpha $ and g(x) attains
minimum value at $\beta $, then
$\mathop {\lim }\limits_{x \to -\alpha \beta } {{\left( {x - 1} \right)\left( {{x^2} - 5x + 6} \right)} \over {{x^2} - 6x + 8}}$ is equal to :
For a suitably chosen real constant a, let afunction, $f:R - \left\{ { - a} \right\} \to R$ be defined by$f(x) = {{a - x} \over {a + x}}$. Further suppose that for any realnumber $x \ne - a$ and $f(x) \ne - a$, (fof)(x) = x. Then $f\left( { - {1 \over 2}} \right)$ is equal to :
Let the range of the function
$f(x)=6+16\cos x\cdot \cos\!\left(\frac{\pi}{3}-x\right)\cdot \cos\!\left(\frac{\pi}{3}+x\right)\cdot \sin 3x\cdot \cos 6x,\ x\in\mathbb{R}$
be $[\alpha,\beta]$. Then the distance of the point $(\alpha,\beta)$ from the line $3x+4y+12=0$ is:
If $a\in\mathbb{R}$ and the equation $-3(x-[x])^{2}+2(x-[x])+a^{2}=0$
(where $[x]$ denotes the greatest integer $\le x$) has no integral solution,
then all possible values of $a$ lie in the interval :