JEE MAIN Indefinite Integration Previous Year Questions (PYQs) – Page 4 of 5

JEE MAIN Indefinite Integration Previous Year Questions (PYQs) – Page 4 of 5

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The integral $\int {{1 \over {\root 4 \of {{{(x - 1)}^3}{{(x + 2)}^5}} }}} \,dx$ is equal to : (where C is a constant of integration)

1
2
3
4

logo

The integral $ \displaystyle \int \frac{2x^{12} + 5x^{9}}{(x^{5} + x^{2} + 1)^{3}}, dx $ is equal to:

1
2
3
4

logo

If $\int {{{\sin }^{ - 1}}\left( {\sqrt {{x \over {1 + x}}} } \right)} dx$ = A(x)${\tan ^{ - 1}}\left( {\sqrt x } \right)$ + B(x) + C,
where C is a constant of integration, then theordered pair (A(x), B(x)) can be :

1
2
3
4

logo

The integral $\int {{{\left( {{x \over {x\sin x + \cos x}}} \right)}^2}dx} $ is equal to
(where C is a constant of integration):

1
2
3
4

logo

Let $f(x) = \int x^3 \sqrt{3 - x^2} , dx.$ If $5f(\sqrt{2}) = -4$, then $f(1)$ is equal to

1
2
3
4

logo

The integral $\int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{\tan }^3}x.{{\sin }^2}3x\left( {2{{\sec }^2}x.{{\sin }^2}3x + 3\tan x.\sin 6x} \right)dx} $is equal to:

1
2
3
4

logo

If $\displaystyle \int \frac{dx}{\cos^{3}x\sqrt{2\sin 2x}} = (\tan x)^{A} + C(\tan x)^{B} + k,$ where $k$ is a constant of integration, then $A + B + C$ equals :

1
2
3
4

logo

If $\displaystyle \int \frac{dx}{(x^{2}-2x+10)^{2}} = A\left(\tan^{-1}\left(\frac{x-1}{3}\right) + \frac{f(x)}{x^{2}-2x+10}\right) + C$ where $C$ is a constant of integration, then:

1
2
3
4

logo

If $f(x)=\displaystyle\int \frac{5x^{8}+7x^{6}}{(x^{2}+1+2x^{7})^{2}}\,dx,\ (x\ge 0)$ and $f(0)=0$, then the value of $f(1)$ is:

1
2
3
4

logo

If$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $ = $g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$where c is a constant of integration,then g(0) is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...