Qus : 31
3
The integral $\int {{1 \over {\root 4 \of {{{(x - 1)}^3}{{(x + 2)}^5}} }}} \,dx$ is equal to : (where C is a constant of integration)
1
$\dfrac{3}{4}\left(\dfrac{x+2}{x-1}\right)^{\tfrac{1}{4}}+C$
2
$\dfrac{3}{4}\left(\dfrac{x+2}{x-1}\right)^{\tfrac{5}{4}}+C$
3
$\dfrac{4}{3}\left(\dfrac{x-1}{x+2}\right)^{\tfrac{1}{4}}+C$
4
$\dfrac{4}{3}\left(\dfrac{x-1}{x+2}\right)^{\tfrac{5}{4}}+C$
✓ Solution
Qus : 32
4
The integral
$ \displaystyle \int \frac{2x^{12} + 5x^{9}}{(x^{5} + x^{2} + 1)^{3}}, dx $
is equal to:
1
$ \displaystyle -\frac{x^{5}}{2(x^{5}+x^{2}+1)^{2}} + C $
2
$ \displaystyle -\frac{x^{10}}{2(x^{5}+x^{2}+1)^{2}} + C $
3
$ \displaystyle -\frac{x^{5}}{(x^{5}+x^{2}+1)^{2}} + C $
4
$ \displaystyle \frac{x^{10}}{2(x^{5}+x^{2}+1)^{2}} + C $
✓ Solution
Qus : 33
1
If $\int {{{\sin }^{ - 1}}\left( {\sqrt {{x \over {1 + x}}} } \right)} dx$ = A(x)${\tan ^{ - 1}}\left( {\sqrt x } \right)$ + B(x) + C, where C is a constant of integration, then theordered pair (A(x), B(x)) can be :
✓ Solution
Qus : 34
3
The integral $\int {{{\left( {{x \over {x\sin x + \cos x}}} \right)}^2}dx} $ is equal to (where C is a constant of integration):
1
$\sec x - {{x\tan x} \over {x\sin x + \cos x}} + C$
2
$\sec x + {{x\tan x} \over {x\sin x + \cos x}} + C$
3
$\tan x - {{x\tan x} \over {x\sin x + \cos x}} + C$
4
$\tan x + {{x\tan x} \over {x\sin x + \cos x}} + C$
✓ Solution
Qus : 35
1
Let $f(x) = \int x^3 \sqrt{3 - x^2} , dx.$ If $5f(\sqrt{2}) = -4$, then $f(1)$ is equal to
1
$-\dfrac{6\sqrt{2}}{5}$
2
$-\dfrac{8\sqrt{2}}{5}$
3
$-\dfrac{2\sqrt{2}}{5}$
4
$-\dfrac{4\sqrt{2}}{5}$
✓ Solution
Qus : 36
2
The integral $\int\limits_{{\pi \over 6}}^{{\pi \over 3}} {{{\tan }^3}x.{{\sin }^2}3x\left( {2{{\sec }^2}x.{{\sin }^2}3x + 3\tan x.\sin 6x} \right)dx} $is equal to:
✓ Solution
Qus : 37
2
If
$\displaystyle \int \frac{dx}{\cos^{3}x\sqrt{2\sin 2x}} = (\tan x)^{A} + C(\tan x)^{B} + k,$
where $k$ is a constant of integration, then $A + B + C$ equals :
✓ Solution
Qus : 38
2
If $\displaystyle \int \frac{dx}{(x^{2}-2x+10)^{2}} = A\left(\tan^{-1}\left(\frac{x-1}{3}\right) + \frac{f(x)}{x^{2}-2x+10}\right) + C$ where $C$ is a constant of integration, then:
1
$A=\dfrac{1}{54}$ and $f(x)=9(x-1)^{2}$
2
$A=\dfrac{1}{54}$ and $f(x)=3(x-1)$
3
$A=\dfrac{1}{81}$ and $f(x)=3(x-1)$
4
$A=\dfrac{1}{27}$ and $f(x)=9(x-1)^{2}$
✓ Solution
Qus : 39
4
If $f(x)=\displaystyle\int \frac{5x^{8}+7x^{6}}{(x^{2}+1+2x^{7})^{2}}\,dx,\ (x\ge 0)$ and $f(0)=0$, then the value of $f(1)$ is:
✓ Solution
Qus : 40
2
If$\int {\left( {{e^{2x}} + 2{e^x} - {e^{ - x}} - 1} \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}}dx} $ = $g\left( x \right){e^{\left( {{e^x} + {e^{ - x}}} \right)}} + c$where c is a constant of integration,then g(0) is equal to :
✓ Solution