Qus : 41
3
If $\displaystyle \int x^{5}e^{-x^{2}},dx=g(x)e^{-x^{2}}+c$, where $c$ is a constant of integration, then $g(-1)$ is equal to:
✓ Solution
Qus : 42
2
The integral $\displaystyle \int \frac{dx}{(1+\sqrt{x})\sqrt{x - x^{2}}}$ is equal to :
1
$-2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}}+C$
2
$-2\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}+C$
3
$-\sqrt{\frac{1-\sqrt{x}}{1+\sqrt{x}}}+C$
4
$2\sqrt{\frac{1+\sqrt{x}}{1-\sqrt{x}}}+C$
✓ Solution
Qus : 43
1
If $\displaystyle \int e^{x}\!\left(\frac{x\sin^{-1}x}{\sqrt{1-x^{2}}}+\frac{\sin^{-1}x}{(1-x^{2})^{3/2}}+\frac{x}{1-x^{2}}\right)\!dx=g(x)+C$, where $C$ is the constant of integration, then $g\!\left(\dfrac{1}{2}\right)$ equals:
1
$\dfrac{\pi}{6}\sqrt{e^{3}}$
2
$\dfrac{\pi}{6}\sqrt{e^{2}}$
3
$\dfrac{\pi}{4}\sqrt{e^{3}}$
4
$\dfrac{\pi}{4}\sqrt{e^{2}}$
✓ Solution
Qus : 44
3
Let $n\ge 2$ be a natural number and $0<\theta<\dfrac{\pi}{2}$. Then
\[
\int \frac{\big(\sin^{n}\theta-\sin\theta\big)^{1/n}\,\cos\theta}{\sin^{\,n+1}\theta}\,d\theta
\]
is equal to (where $C$ is a constant of integration):
1
$\displaystyle \frac{n}{n^{2}-1}\!\left(1+\frac{1}{\sin^{\,n-1}\theta}\right)^{\!\frac{n+1}{n}}+C$
2
$\displaystyle \frac{n}{n^{2}-1}\!\left(1-\frac{1}{\sin^{\,n-1}\theta}\right)^{\!\frac{n+1}{n}}+C$
3
$\displaystyle \frac{n}{n^{2}-1}\!\left(1-\frac{1}{\sin^{\,n-1}\theta}\right)^{\!\frac{n+1}{n}}+C$
4
$\displaystyle \frac{n}{n^{2}+1}\!\left(1-\frac{1}{\sin^{\,n-1}\theta}\right)^{\!\frac{n+1}{n}}+C$
✓ Solution
Qus : 45
3
The integral $\displaystyle \int \dfrac{2x^3 - 1}{x^4 + x} , dx$ is equal to :
(Here $C$ is a constant of integration)
1
$\log_e \dfrac{|x^3 + 1|}{x^2} + C$
2
$\dfrac{1}{2} \log_e \dfrac{|x^3 + 1|}{x^2} + C$
3
$\log_e \dfrac{|x^3 + 1|}{x} + C$
4
$\dfrac{1}{2} \log_e \dfrac{(x^3 + 1)^2}{|x^3|} + C$
✓ Solution
Qus : 46
2
The integral $\displaystyle \int \frac{dx}{x^{2}(x^{4}+1)^{3/4}}$ equals :
2
$-\left(\frac{x^{4}+1}{x^{4}}\right)^{1/4}+c$
3
$\left(\frac{x^{4}+1}{x^{4}}\right)^{1/4}+c$
✓ Solution
Qus : 47
3
If $\int {{{\cos \theta } \over {5 + 7\sin \theta - 2{{\cos }^2}\theta }}} d\theta $ = A${\log _e}\left| {B\left( \theta \right)} \right| + C$,where C is a constant of integration, then ${{{B\left( \theta \right)} \over A}}$can be :
1
${{2\sin \theta + 1} \over {5\left( {\sin \theta + 3} \right)}}$
2
${{2\sin \theta + 1} \over {\sin \theta + 3}}$
3
${{5\left( {2\sin \theta + 1} \right)} \over {\sin \theta + 3}}$
4
${{5\left( {\sin \theta + 3} \right)} \over {2\sin \theta + 1}}$
✓ Solution