Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to
Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :
Let $I(x)=\displaystyle \int \frac{x^{2}\big(x\sec^{2}x+\tan x\big)}{(x\tan x+1)^{2}}\,dx.$
If $I(0)=0$, then $I\!\left(\frac{\pi}{4}\right)$ is equal to:
If $\displaystyle \int \frac{\sqrt{\,1-x^{2}\,}}{x^{4}}\,dx = A(x)\left(\sqrt{\,1-x^{2}\,}\right)^{m} + C$, for a suitable chosen integer $m$ and a function $A(x)$, where $C$ is a constant of integration, then $(A(x))^{m}$ equals :
If $f\left( {{{x - 4} \over {x + 2}}} \right) = 2x + 1,$ (x $ \in $ R $-${1, $-$ 2}), then $\int f \left( x \right)dx$ is equal to :
(where C is a constant of integration)
The integral $\int {{{{e^{3{{\log }_e}2x}} + 5{e^{2{{\log }_e}2x}}} \over {{e^{4{{\log }_e}x}} + 5{e^{3{{\log }_e}x}} - 7{e^{2{{\log }_e}x}}}}} dx$, x > 0, is equal to : (where c is a constant of integration)