JEE MAIN Indefinite Integration Previous Year Questions (PYQs) – Page 1 of 5

JEE MAIN Indefinite Integration Previous Year Questions (PYQs) – Page 1 of 5

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $\mathrm{I}(x)=\int \frac{d x}{(x-11)^{\frac{11}{13}}(x+15)^{\frac{15}{13}}}$. If $\mathrm{I}(37)-\mathrm{I}(24)=\frac{1}{4}\left(\frac{1}{\mathrm{~b}^{\frac{1}{13}}}-\frac{1}{\mathrm{c}^{\frac{1}{13}}}\right), \mathrm{b}, \mathrm{c} \in \mathcal{N}$, then $3(\mathrm{~b}+\mathrm{c})$ is equal to

1
2
3
4

logo

The integral $\displaystyle \int (1+x-\frac{1}{x})e^{x+\frac{1}{x}}\,dx$ is equal to

1
2
3
4

logo

If $\displaystyle \int x^{5}\,e^{-4x^{3}}\,dx=\dfrac{1}{48}\,e^{-4x^{3}}\,f(x)+C$, where $C$ is a constant of integration, then $f(x)$ is equal to –

1
2
3
4

logo

Let $\int x^3 \sin x \mathrm{~d} x=g(x)+C$, where $C$ is the constant of integration. If $8\left(g\left(\frac{\pi}{2}\right)+g^{\prime}\left(\frac{\pi}{2}\right)\right)=\alpha \pi^3+\beta \pi^2+\gamma, \alpha, \beta, \gamma \in Z$, then $\alpha+\beta-\gamma$ equals :

1
2
3
4

logo

If $\int f(x)\,dx=\psi(x)$, then $\int x^{5}f(x^{3})\,dx$ is equal to

1
2
3
4

logo

Let $I(x)=\displaystyle \int \frac{x^{2}\big(x\sec^{2}x+\tan x\big)}{(x\tan x+1)^{2}}\,dx.$ If $I(0)=0$, then $I\!\left(\frac{\pi}{4}\right)$ is equal to:

1
2
3
4

logo

If $\displaystyle \int \frac{\sqrt{\,1-x^{2}\,}}{x^{4}}\,dx = A(x)\left(\sqrt{\,1-x^{2}\,}\right)^{m} + C$, for a suitable chosen integer $m$ and a function $A(x)$, where $C$ is a constant of integration, then $(A(x))^{m}$ equals :

1
2
3
4

logo

If $f\left( {{{x - 4} \over {x + 2}}} \right) = 2x + 1,$ (x $ \in $ R $-${1, $-$ 2}), then $\int f \left( x \right)dx$ is equal to :
(where C is a constant of integration)

1
2
3
4

logo

If $\displaystyle \int \frac{x+1}{\sqrt{2x-1}}\,dx = f(x)\,\sqrt{2x-1}+C$, where $C$ is a constant of integration, then $f(x)$ is equal to :

1
2
3
4

logo

The integral $\int {{{{e^{3{{\log }_e}2x}} + 5{e^{2{{\log }_e}2x}}} \over {{e^{4{{\log }_e}x}} + 5{e^{3{{\log }_e}x}} - 7{e^{2{{\log }_e}x}}}}} dx$, x > 0, is equal to : (where c is a constant of integration)

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...