JEE MAIN Inequation Previous Year Questions (PYQs) – Page 1 of 2

JEE MAIN Inequation Previous Year Questions (PYQs) – Page 1 of 2

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $A = \{x \in \mathbb{R} : [x + 3] + [x + 4] \le 3\}$, and $B = \left\{ x \in \mathbb{R} : 3^x \left( \sum_{r=1}^{\infty} \frac{3}{10^r} \right)^{x - 3} < 3^{-3x} \right\}$, where $[\,]$ denotes the greatest integer function. Then,

1
2
3
4

logo

The number of real roots of the equation $x|x-2|+3|x-3|+1=0$ is:

1
2
3
4

logo

Let x, y > 0. If x3y2 = 215, then the least value of 3x + 2y is

1
2
3
4

logo

$A={(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}:\ |\alpha-1|\le 4\ \text{and}\ |\beta-5|\le 6}$ $B={(\alpha,\beta)\in\mathbb{R}\times\mathbb{R}:\ 16(\alpha-2)^2+9(\beta-6)^2\le 144}.$ Then

1
2
3
4

logo

$S = \{\, x \in [-6,3] \setminus \{-2,2\} \;:\; \dfrac{|x+3|-1}{|x|-2} \geq 0 \,\}$ $T = \{\, x \in \mathbb{Z} \;:\; x^{2} - 7|x| + 9 \leq 0 \,\}$ Then the number of elements in $S \cap T$ is :

1
2
3
4

logo

Let $S = {x \in \mathbb{R} : x \ge 0 \text{ and } 2\lvert\sqrt{x}-3\rvert + \sqrt{x}(\sqrt{x}-6)+6=0}$. Then $S$ :

1
2
3
4

logo

Let $f:R \to R$ and $g:R \to R$ be two functions defined by $f(x) = {\log _e}({x^2} + 1) - {e^{ - x}} + 1$ and $g(x) = {{1 - 2{e^{2x}}} \over {{e^x}}}$. Then, for which of the following range of $\alpha$, the inequality $f\left( {g\left( {{{{{(\alpha - 1)}^2}} \over 3}} \right)} \right) > f\left( {g\left( {\alpha -{5 \over 3}} \right)} \right)$ holds ?

1
2
3
4

logo

Let [x] denote the greatest integer less than or equal to x. Then the domain of $ f(x) = \sec^{-1}(2[x] + 1) $ is:

1
2
3
4

logo

The equation $x^{2}-4x+[x]+3 = x[x]$, where $[x]$ denotes the greatest integer function, has:

1
2
3
4

logo

The sum of the squares of the roots of $|x - 2|^2 + |x - 2| - 2 = 0$ and the squares of the roots of $x^2 - 2|x - 3| - 5 = 0$, is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...