JEE MAIN Limit Previous Year Questions (PYQs) – Page 1 of 9

JEE MAIN Limit Previous Year Questions (PYQs) – Page 1 of 9

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

$\displaystyle \lim_{x\to 0}\frac{\sin(\pi \cos^{2}x)}{x^{2}}$ is equal to :

1
2
3
4

logo

$\lim_{x \to 1} \left( \dfrac{\int_{0}^{(x-1)^{2}} t \cos(t^{2}) \, dt}{(x-1)\sin(x-1)} \right)$

1
2
3
4

logo

Let $\beta=\lim_{x\to 0}\dfrac{\alpha x-(e^{3x}-1)}{\alpha x(e^{3x}-1)}$ for some $\alpha\in\mathbb{R}$. Then the value of $\alpha+\beta$ is:

1
2
3
4

logo

$\lim_{x\to 0}\dfrac{x+2\sin x}{\sqrt{x^{2}+2\sin x+1}-\sqrt{\sin^{2}x-x+1}}$ is:

1
2
3
4

logo

Let f : R $\to$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$ is equal to :

1
2
3
4

logo

$\displaystyle \lim_{x\to\infty}\frac{(2x^{2}-3x+5),(3x-1)^{x/2}}{(3x^{2}+5x+4),\sqrt{(3x+2)^{x}}}$ is equal to:

1
2
3
4

logo

$\displaystyle \lim_{x\to 0}\frac{(1-\cos 2x)(3+\cos x)}{x\tan 4x}$ is equal to :

1
2
3
4

logo

Let $f$ be a differentiable function on $\mathbb{R}$ such that $f(2)=1,\ f'(2)=4$. Let $\displaystyle \lim_{x\to 0}\big(f(2+x)\big)^{\frac{3}{x}}=e^{\alpha}$. Then the number of times the curve $y=4x^3-4x^2-4(\alpha-7)x-\alpha$ meets the $x$-axis is:

1
2
3
4

logo

Let $[x]$ denote the greatest integer less than or equal to $x$. Then $\displaystyle \lim_{x\to 0}\frac{\tan(\pi\sin^{2}x)+\left(|x|-\sin(x[x])\right)^{2}}{x^{2}}$ :

1
2
3
4

logo

$\displaystyle \lim_{x\to 0^{+}}\frac{\tan\big(5x^{1/5}\big),\ln(1+3x^{2})}{\big(\tan^{-1}(3\sqrt{2})\big),\big(e^{x\sqrt{3}}-1\big)}$ is equal to

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...