Let f : R $\to$ R be a function such that f(2) = 4 and f'(2) = 1. Then, the value of $\mathop {\lim }\limits_{x \to 2} {{{x^2}f(2) - 4f(x)} \over {x - 2}}$ is equal to :
Let $f$ be a differentiable function on $\mathbb{R}$ such that $f(2)=1,\ f'(2)=4$.
Let $\displaystyle \lim_{x\to 0}\big(f(2+x)\big)^{\frac{3}{x}}=e^{\alpha}$.
Then the number of times the curve $y=4x^3-4x^2-4(\alpha-7)x-\alpha$ meets the $x$-axis is:
Let $[x]$ denote the greatest integer less than or equal to $x$. Then
$\displaystyle \lim_{x\to 0}\frac{\tan(\pi\sin^{2}x)+\left(|x|-\sin(x[x])\right)^{2}}{x^{2}}$ :