JEE MAIN Logarithmic Series Previous Year Questions (PYQs)

JEE MAIN Logarithmic Series Previous Year Questions (PYQs)

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If 0 < a, b < 1, and tan$-$1a + tan$-$1b = ${\pi \over 4}$, then the value of

$(a + b) - \left( {{{{a^2} + {b^2}} \over 2}} \right) + \left( {{{{a^3} + {b^3}} \over 3}} \right) - \left( {{{{a^4} + {b^4}} \over 4}} \right) + .....$ is :

1
2
3
4

logo

Let ${S_k} = \sum\limits_{r = 1}^k {{{\tan }^{ - 1}}\left( {{{{6^r}} \over {{2^{2r + 1}} + {3^{2r + 1}}}}} \right)} $. Then $\mathop {\lim }\limits_{k \to \infty } {S_k}$ is equal to :

1
2
3
4

logo

If the solution of the equation $\log_{\cos x}\!\big(\cot x\big) + 4\log_{\sin x}\!\big(\tan x\big) = 1,\ x\in\left(0,\tfrac{\pi}{2}\right),$ is $\sin^{-1}\!\left(\tfrac{\alpha+\sqrt{\beta}}{2}\right)$, where $\alpha,\beta$ are integers, then $\alpha+\beta$ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...