JEE MAIN Matrices Previous Year Questions (PYQs) – Page 10 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 10 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

For two $3 \times 3$ matrices $A$ and $B$, let $A + B = 2B^T$ and $3A + 2B = I_3$, where $B^T$ is the transpose of $B$ and $I_3$ is $3 \times 3$ identity matrix. Then:

1
2
3
4

logo

Let $B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha > 2$ be the adjoint of a matrix $A$ and $|A|=2$. Then $\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$$ is equal to :

1
2
3
4

logo

If $\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix} \begin{bmatrix}1 & 2 \\ 0 & 1\end{bmatrix} \begin{bmatrix}1 & 3 \\ 0 & 1\end{bmatrix} \cdots \begin{bmatrix}1 & n-1 \\ 0 & 1\end{bmatrix} = \begin{bmatrix}1 & 78 \\ 0 & 1\end{bmatrix}$, then the inverse of $\begin{bmatrix}1 & n \\ 0 & 1\end{bmatrix}$ is:

1
2
3
4

logo

The system of linear equations
3x - 2y - kz = 10
2x - 4y - 2z = 6
x+2y - z = 5m
is inconsistent if :

1
2
3
4

logo

Let $A=\begin{bmatrix}\dfrac{1}{\sqrt{10}} & \dfrac{3}{\sqrt{10}}\\[4pt]-\dfrac{3}{\sqrt{10}} & \dfrac{1}{\sqrt{10}}\end{bmatrix}$ and $B=\begin{bmatrix}1 & -i\\[2pt] 0 & 1\end{bmatrix}$, where $i=\sqrt{-1}$.

1
2
3
4

logo

Let $\mathrm{A}=\left[\begin{array}{cc}\alpha & -1 \\ 6 & \beta\end{array}\right], \alpha>0$, such that $\operatorname{det}(\mathrm{A})=0$ and $\alpha+\beta=1$. If I denotes $2 \times 2$ identity matrix, then the matrix $(I+A)^8$ is :

1
2
3
4

logo

$\text{The number of symmetric matrices of order }3\text{, with all entries from the set }{0,1,2,3,4,5,6,7,8,9}\text{ is:}$

1
2
3
4

logo

Let $A + 2B = \left[ {\matrix{ 1 & 2 & 0 \cr 6 & { - 3} & 3 \cr { - 5} & 3 & 1 \cr } } \right]$ and $2A - B = \left[ {\matrix{ 2 & { - 1} & 5 \cr 2 & { - 1} & 6 \cr 0 & 1 & 2 \cr } } \right]$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) $-$ Tr(B) has value equal to

1
2
3
4

logo

Let $\alpha$ and $\beta$ be real numbers. Consider a $3\times 3$ matrix $A$ such that $A^{2}=3A+\alpha I$. If $A^{4}=21A+\beta I$, then

1
2
3
4

logo

If the system of linear equations

$\begin{aligned} & x-2 y+z=-4 \\ & 2 x+\alpha y+3 z=5 \\ & 3 x-y+\beta z=3 \end{aligned}$

has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to


1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...