Qus : 91
2
For two $3 \times 3$ matrices $A$ and $B$, let
$A + B = 2B^T$ and $3A + 2B = I_3$,
where $B^T$ is the transpose of $B$ and $I_3$ is $3 \times 3$ identity matrix. Then:
✓ Solution
Qus : 92
2
Let $B=\left[\begin{array}{lll}1 & 3 & \alpha \\ 1 & 2 & 3 \\ \alpha & \alpha & 4\end{array}\right], \alpha > 2$ be the adjoint of a matrix $A$ and $|A|=2$. Then $\left[\begin{array}{ccc}\alpha & -2 \alpha & \alpha\end{array}\right] B\left[\begin{array}{c}\alpha \\ -2 \alpha \\ \alpha\end{array}\right]$$ is equal to :
✓ Solution
Qus : 93
3
If
$\begin{bmatrix}1 & 1 \\ 0 & 1\end{bmatrix}
\begin{bmatrix}1 & 2 \\ 0 & 1\end{bmatrix}
\begin{bmatrix}1 & 3 \\ 0 & 1\end{bmatrix}
\cdots
\begin{bmatrix}1 & n-1 \\ 0 & 1\end{bmatrix}
=
\begin{bmatrix}1 & 78 \\ 0 & 1\end{bmatrix}$,
then the inverse of
$\begin{bmatrix}1 & n \\ 0 & 1\end{bmatrix}$
is:
1
$\begin{bmatrix}1 & 0 \\ 12 & 1\end{bmatrix}$
2
$\begin{bmatrix}1 & 0 \\ 13 & 1\end{bmatrix}$
3
$\begin{bmatrix}1 & -13 \\ 0 & 1\end{bmatrix}$
4
$\begin{bmatrix}1 & -13 \\ 0 & 1\end{bmatrix}$
✓ Solution
Qus : 94
2
The system of linear equations 3x - 2y - kz = 10 2x - 4y - 2z = 6 x+2y - z = 5m is inconsistent if :
1
k $ \ne $ 3, m $ \in $ R
2
k = 3, m $ \ne $ ${4 \over 5}$
3
k = 3, m $ = $ ${4 \over 5}$
4
k $ \ne $ 3, m $ \ne $ ${4 \over 5}$
✓ Solution
Qus : 95
3
Let
$A=\begin{bmatrix}\dfrac{1}{\sqrt{10}} & \dfrac{3}{\sqrt{10}}\\[4pt]-\dfrac{3}{\sqrt{10}} & \dfrac{1}{\sqrt{10}}\end{bmatrix}$
and
$B=\begin{bmatrix}1 & -i\\[2pt] 0 & 1\end{bmatrix}$, where $i=\sqrt{-1}$.
1
$\begin{bmatrix}1 & -2023\,i\\[2pt] 0 & 1\end{bmatrix}$
2
$\begin{bmatrix}1 & 0\\[2pt] 2023\,i & 1\end{bmatrix}$
3
$\begin{bmatrix}1 & 2023\,i\\[2pt] 0 & 1\end{bmatrix}$
4
$\begin{bmatrix}1 & 0\\[2pt] -2023\,i & 1\end{bmatrix}$
✓ Solution
Qus : 96
2
Let $\mathrm{A}=\left[\begin{array}{cc}\alpha & -1 \\ 6 & \beta\end{array}\right], \alpha>0$, such that $\operatorname{det}(\mathrm{A})=0$ and $\alpha+\beta=1$. If I denotes $2 \times 2$ identity matrix, then the matrix $(I+A)^8$ is :
1
$\left[\begin{array}{cc}257 & -64 \\ 514 & -127\end{array}\right]$
2
$\left[\begin{array}{cc}766 & -255 \\ 1530 & -509\end{array}\right]$
3
$\left[\begin{array}{cc}1025 & -511 \\ 2024 & -1024\end{array}\right]$
4
$\left[\begin{array}{ll}4 & -1 \\ 6 & -1\end{array}\right]$
✓ Solution
Qus : 97
3
$\text{The number of symmetric matrices of order }3\text{, with all entries from the set }{0,1,2,3,4,5,6,7,8,9}\text{ is:}$
✓ Solution
Qus : 98
2
Let $A + 2B = \left[ {\matrix{ 1 & 2 & 0 \cr 6 & { - 3} & 3 \cr { - 5} & 3 & 1 \cr } } \right]$ and $2A - B = \left[ {\matrix{ 2 & { - 1} & 5 \cr 2 & { - 1} & 6 \cr 0 & 1 & 2 \cr } } \right]$. If Tr(A) denotes the sum of all diagonal elements of the matrix A, then Tr(A) $-$ Tr(B) has value equal to
✓ Solution
Qus : 99
4
Let $\alpha$ and $\beta$ be real numbers. Consider a $3\times 3$ matrix $A$ such that $A^{2}=3A+\alpha I$.
If $A^{4}=21A+\beta I$, then
✓ Solution
Qus : 100
4
If the system of linear equations
$\begin{aligned}
& x-2 y+z=-4 \\
& 2 x+\alpha y+3 z=5 \\
& 3 x-y+\beta z=3
\end{aligned}$
has infinitely many solutions, then $12 \alpha+13 \beta$ is equal to
✓ Solution