Let the system of linear equations4x + $\lambda$y + 2z = 0 ,2x $-$ y + z = 0 , $\mu$x + 2y + 3z = 0, $\lambda$, $\mu$$\in$R. has a non-trivial solution. Then which of the following is true?
Consider the following system of equations
\[
\begin{cases}
\alpha x+2y+z=1,\\
2\alpha x+3y+z=1,\\
3x+\alpha y+2z=\beta
\end{cases}
\]
for some $\alpha,\beta\in\mathbb{R}$. Then which of the following is NOT correct?
Let $A$ be a $3\times3$ real matrix such that
\[
A\!\begin{pmatrix}1\\0\\1\end{pmatrix}
=2\!\begin{pmatrix}1\\0\\1\end{pmatrix},\qquad
A\!\begin{pmatrix}-1\\0\\1\end{pmatrix}
=4\!\begin{pmatrix}-1\\0\\1\end{pmatrix},\qquad
A\!\begin{pmatrix}0\\1\\0\end{pmatrix}
=2\!\begin{pmatrix}0\\1\\0\end{pmatrix}.
\]
Then, the system $(A-3I)\!\begin{pmatrix}x\\y\\z\end{pmatrix}=\begin{pmatrix}1\\2\\3\end{pmatrix}$ has:
If $\alpha$ + $\beta$ + $\gamma$ = 2$\pi$, then the system of equations :- x + (cos $\gamma$)y + (cos $beta$)z = 0,(cos $\gamma$)x + y + (cos $\alpha$)z = 0(cos $\beta$)x + (cos $\alpha$)y + z = 0 has :
Let $A$ be a $3 \times 3$ real matrix such that $A^2(A-2 I)-4(A-I)=O$, where $I$ and $O$ are the identity and null matrices, respectively. If $A^5=\alpha A^2+\beta A+\gamma I$, where $\alpha, \beta$, and $\gamma$ are real constants, then $\alpha+\beta+\gamma$ is equal to :