Let $A$ be a $3 \times 3$ matrix such that $A^{2} - 5A + 7I = 0$.
\textbf{Statement I:}
$A^{-1} = \dfrac{1}{7}(5I - A)$.
\textbf{Statement II:}
The polynomial $A^{3} - 2A^{2} - 3A + I$ can be reduced to $5(A - 4I)$.
Then:
If
$A=\begin{bmatrix}
e^{t} & e^{-t}\cos t & e^{-t}\sin t\\[4pt]
e^{t} & -e^{-t}\cos t - e^{-t}\sin t & -e^{-t}\sin t + e^{-t}\cos t\\[4pt]
e^{t} & 2e^{-t}\sin t & -2e^{-t}\cos t
\end{bmatrix}$,
then $A$ is:
The values of $\lambda$ and $\mu$ such that the system of equations $x + y + z = 6$, $3x + 5y + 5z = 26$, $x + 2y + \lambda z = \mu $ has no solution, are :
Let A = [aij] be a real matrix of order 3 $\times$ 3, such that ai1 + ai2 + ai3 = 1, for i = 1, 2, 3. Then, the sum of all the entries of the matrix A3 is equal to :
$ \textbf{Q:}$ For the system of linear equations $x + y + z = 6,\ \alpha x + \beta y + 7z = 3,\ x + 2y + 3z = 14$, which of the following is **NOT true**?