JEE MAIN Matrices Previous Year Questions (PYQs) – Page 2 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 2 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $A = \left[ {\matrix{ 1 & 2 \cr { - 1} & 4 \cr } } \right]$. If A$-$1 = $\alpha$I + $\beta$A, $\alpha$, $\beta$ $\in$ R, I is a 2 $\times$ 2 identity matrix then 4($\alpha$ $-$ $\beta$) is equal to :

1
2
3
4

logo

The system of equations $\begin{cases} x+y+z=6,\\ x+2y+5z=9,\\ x+5y+\lambda z=\mu \end{cases}$ has no solution if:

1
2
3
4

logo

If $A=\dfrac12\begin{bmatrix}1 & \sqrt{3}\\ -\sqrt{3} & 1\end{bmatrix}$, then:

1
2
3
4

logo

Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :

1
2
3
4

logo

$ \text{Let the minimum value } v_{0} \text{ of } v=\lvert z\rvert^{2}+\lvert z-3\rvert^{2}+\lvert z-6i\rvert^{2},\ z\in\mathbb{C} \text{ be attained at } z=z_{0}. \text{ Then } \lvert 2z_{0}^{2}-\overline{z_{0}}^{\,3}+3\rvert^{2}+v_{0}^{2} \text{ is equal to:} $

1
2
3
4

logo

Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^2+\ldots+(\operatorname{adj} A)^{10}$. Then, the sum of all the elements of the matrix

1
2
3
4

logo

If the system of equations $x + y + a z = b$ $2x + 5y + 2z = 6$ $x + 2y + 3z = 3$ has infinitely many solutions, then $2a + 3b$ is equal to :

1
2
3
4

logo

Let $A$ be a matrix such that $A \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is a scalar matrix and $|3A| = 108$. Then $A^2$ equals :

1
2
3
4

logo

Let $\theta = {\pi \over 5}$ and $A = \left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]$. If B = A + A4, then det (B) :

1
2
3
4

logo

Let $A=\begin{pmatrix} 0 & 2q & r\\ p & q & -r\\ p & -q & r \end{pmatrix}$. If $AA^{T}=I_{3}$, then $|p|$ is :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...