Qus : 11
4
Let $A = \left[ {\matrix{ 1 & 2 \cr { - 1} & 4 \cr } } \right]$. If A$-$1 = $\alpha$I + $\beta$A, $\alpha$, $\beta$ $\in$ R, I is a 2 $\times$ 2 identity matrix then 4($\alpha$ $-$ $\beta$) is equal to :
✓ Solution
Qus : 12
2
The system of equations
$\begin{cases}
x+y+z=6,\\
x+2y+5z=9,\\
x+5y+\lambda z=\mu
\end{cases}$
has no solution if:
2
$\lambda=17,\ \mu\ne 18$
3
$\lambda=15,\ \mu\ne 17$
4
$\lambda\ne 17,\ \mu\ne 18$
✓ Solution
Qus : 13
2
If $A=\dfrac12\begin{bmatrix}1 & \sqrt{3}\\ -\sqrt{3} & 1\end{bmatrix}$, then:
✓ Solution
Qus : 14
2
Let $A=\left[a_{i j}\right]$ be a $3 \times 3$ matrix such that $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right], A\left[\begin{array}{l}4 \\ 1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ and $A\left[\begin{array}{l}2 \\ 1 \\ 2\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$, then $a_{23}$ equals :
✓ Solution
Qus : 15
1
$ \text{Let the minimum value } v_{0} \text{ of } v=\lvert z\rvert^{2}+\lvert z-3\rvert^{2}+\lvert z-6i\rvert^{2},\ z\in\mathbb{C} \text{ be attained at } z=z_{0}. \text{ Then } \lvert 2z_{0}^{2}-\overline{z_{0}}^{\,3}+3\rvert^{2}+v_{0}^{2} \text{ is equal to:} $
✓ Solution
Qus : 16
4
Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$ and $B=I+\operatorname{adj}(A)+(\operatorname{adj} A)^2+\ldots+(\operatorname{adj} A)^{10}$.
Then, the sum of all the elements of the matrix
✓ Solution
Qus : 17
4
If the system of equations
$x + y + a z = b$
$2x + 5y + 2z = 6$
$x + 2y + 3z = 3$
has infinitely many solutions, then $2a + 3b$ is equal to :
✓ Solution
Qus : 18
4
Let $A$ be a matrix such that $A \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}$ is a scalar matrix and $|3A| = 108$. Then $A^2$ equals :
1
$\begin{bmatrix} 4 & -32 \\ 0 & 36 \end{bmatrix}$
B. $\begin{bmatrix} 36 & 0 \\ -32 & 4 \end{bmatrix}$
C. $\begin{bmatrix} 4 & 0 \\ -32 & 36 \end{bmatrix}$
D. $\begin{bmatrix} ? & ? \\ ? & ? \end{bmatrix}$
2
$\begin{bmatrix} 36 & 0 \\ -32 & 4 \end{bmatrix}$
3
$\begin{bmatrix} 4 & 0 \\ -32 & 36 \end{bmatrix}$
4
$\begin{bmatrix} 36 & -32 \\ 0 & 4 \end{bmatrix}$
✓ Solution
Qus : 19
1
Let $\theta = {\pi \over 5}$ and $A = \left[ {\matrix{ {\cos \theta } & {\sin \theta } \cr { - \sin \theta } & {\cos \theta } \cr } } \right]$. If B = A + A4 , then det (B) :
✓ Solution
Qus : 20
1
Let $A=\begin{pmatrix}
0 & 2q & r\\
p & q & -r\\
p & -q & r
\end{pmatrix}$. If $AA^{T}=I_{3}$, then $|p|$ is :
✓ Solution