Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -2 \\ 0 & 1\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta>0$. If $\mathrm{B}=\mathrm{PAP}{ }^{\top}, \mathrm{C}=\mathrm{P}^{\top} \mathrm{B}^{10} \mathrm{P}$ and the sum of the diagonal elements of $C$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is :
Let
$A=\begin{bmatrix}
2&1&2\\
6&2&11\\
3&3&2
\end{bmatrix}
\quad\text{and}\quad
P=\begin{bmatrix}
1&2&0\\
5&0&2\\
7&1&5
\end{bmatrix}.
$
The sum of the prime factors of $\left|\,P^{-1}AP-2I\,\right|$ is equal to:
Let $\mathbf{A}$ be a $2 \times 2$ matrix with real entries such that
$\mathbf{A}' = \alpha \mathbf{A} + \mathbf{I}$, where $\alpha \in \mathbb{R} - \{-1, 1\}$.
If $\det(\mathbf{A}^2 - \mathbf{A}) = 4$, then the sum of all possible values of $\alpha$ is equal to:
Let $A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right]$. If $A^3=4 A^2-A-21 I$, where $I$ is the identity matrix of order $3 \times 3$, then $2 a+3 b$ is equal to
Let a, b, c $ \in $ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = $\left( {\matrix{ a & b & c \cr b & c & a \cr c & a & b \cr } } \right)$ satisfies ATA = I, then a value of abc can be :