JEE MAIN Matrices Previous Year Questions (PYQs) – Page 7 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 7 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If the system of equations $x+y+z=6$ $2x+5y+\alpha z=\beta$ $x+2y+3z=14$ has infinitely many solutions, then $\alpha+\beta$ is equal to:

1
2
3
4

logo

Let $A = \left[ {\matrix{ i & { - i} \cr { - i} & i \cr } } \right],i = \sqrt { - 1} $. Then, the system of linear equations ${A^8}\left[ {\matrix{ x \cr y \cr } } \right] = \left[ {\matrix{ 8 \cr {64} \cr } } \right]$ has :

1
2
3
4

logo

If the system of equations

$\alpha$x + y + z = 5, x + 2y + 3z = 4, x + 3y + 5z = $\beta$

has infinitely many solutions, then the ordered pair ($\alpha$, $\beta$) is equal to :


1
2
3
4

logo

Let $\mathrm{A}=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & -2 \\ 0 & 1\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right], \theta>0$. If $\mathrm{B}=\mathrm{PAP}{ }^{\top}, \mathrm{C}=\mathrm{P}^{\top} \mathrm{B}^{10} \mathrm{P}$ and the sum of the diagonal elements of $C$ is $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$, then $m+n$ is :

1
2
3
4

logo

If $A = \begin{bmatrix} 2 & -3 \\ -4 & 1 \end{bmatrix}$, then $\operatorname{adj}(3A^{2} + 12A)$ is equal to :

1
2
3
4

logo

Let $A=\begin{bmatrix} 2&1&2\\ 6&2&11\\ 3&3&2 \end{bmatrix} \quad\text{and}\quad P=\begin{bmatrix} 1&2&0\\ 5&0&2\\ 7&1&5 \end{bmatrix}. $ The sum of the prime factors of $\left|\,P^{-1}AP-2I\,\right|$ is equal to:

1
2
3
4

logo

Let $\mathbf{A}$ be a $2 \times 2$ matrix with real entries such that $\mathbf{A}' = \alpha \mathbf{A} + \mathbf{I}$, where $\alpha \in \mathbb{R} - \{-1, 1\}$. If $\det(\mathbf{A}^2 - \mathbf{A}) = 4$, then the sum of all possible values of $\alpha$ is equal to:

1
2
3
4

logo

Let $A=\left[\begin{array}{lll}2 & a & 0 \\ 1 & 3 & 1 \\ 0 & 5 & b\end{array}\right]$. If $A^3=4 A^2-A-21 I$, where $I$ is the identity matrix of order $3 \times 3$, then $2 a+3 b$ is equal to

1
2
3
4

logo

Let $A = \left( {\matrix{ {\cos \alpha } & { - \sin \alpha } \cr {\sin \alpha } & {\cos \alpha } \cr } } \right)$, ($\alpha $ $ \in $ R)
such that ${A^{32}} = \left( {\matrix{ 0 & { - 1} \cr 1 & 0 \cr } } \right)$ then a value of $\alpha $

1
2
3
4

logo

Let a, b, c $ \in $ R be all non-zero and satisfy a3 + b3 + c3 = 2. If the matrix A = $\left( {\matrix{ a & b & c \cr b & c & a \cr c & a & b \cr } } \right)$ satisfies ATA = I, then a value of abc can be :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...