JEE MAIN Matrices Previous Year Questions (PYQs) – Page 9 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 9 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The number of square matrices of order $5$ with entries from the set $\{0,1\}$, such that the sum of all the elements in each row is $1$ and the sum of all the elements in each column is also $1$, is:

1
2
3
4

logo

If \[ \begin{vmatrix} x+1 & x & x \\ x & x+\lambda & x \\ x & x & x+\lambda^2 \end{vmatrix} = \dfrac{9}{8}\,(103x+81), \] then $\lambda,\ \dfrac{\lambda}{3}$ are the roots of the equation:

1
2
3
4

logo

The maximum value of $f(x) = \left| {\matrix{ {{{\sin }^2}x} & {1 + {{\cos }^2}x} & {\cos 2x} \cr {1 + {{\sin }^2}x} & {{{\cos }^2}x} & {\cos 2x} \cr {{{\sin }^2}x} & {{{\cos }^2}x} & {\sin 2x} \cr } } \right|,x \in R$ is :

1
2
3
4

logo

Let $\mathrm{A}$ be a square matrix such that $\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$. Then $\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$ is equal to

1
2
3
4

logo

Let $\mathbf{A}=\begin{bmatrix} 1 & \tfrac{1}{51} \\[2pt] 0 & 1 \end{bmatrix}$. If $\mathbf{B}=\begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}\mathbf{A}\begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$, then the sum of all the elements of the matrix $\displaystyle \sum_{n=1}^{50} \mathbf{B}^n$ is equal to:

1
2
3
4

logo

Let $R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$ be a non-zero $3 \times 3$ matrix, where $x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$. For a square matrix $M$, let trace $(M)$ denote the sum of all the diagonal entries of $M$. Then, among the statements:

(I) Trace $(R)=0$

(II) If trace $(\operatorname{adj}(\operatorname{adj}(R))=0$, then $R$ has exactly one non-zero entry.


1
2
3
4

logo

Let $S_{1}$ and $S_{2}$ be respectively the sets of all $a\in \mathbb{R}\setminus\{0\}$ for which the system of linear equations $ax+2ay-3az=1$ $(2a+1)x+(2a+3)y+(a+1)z=2$ $(3a+5)x+(a+5)y+(a+2)z=3$ has unique solution and infinitely many solutions. Then

1
2
3
4

logo

Consider the system of linear equations $x+y+z=5,\quad x+2y+\lambda^2 z=9,\quad x+3y+\lambda z=\mu,$ where $\lambda,\mu\in\mathbb{R}$. Which of the following statements is NOT correct?

1
2
3
4

logo

For the system of linear equations

$2 x+4 y+2 a z=b$

$x+2 y+3 z=4$

$2 x-5 y+2 z=8$

which of the following is NOT correct?


1
2
3
4

logo

If the function $f(x) = \left\{ {\matrix{ {(1 + |\cos x|)^{\lambda \over {|\cos x|}}} & , & {0 < x < {\pi \over 2}} \cr \mu & , & {x = {\pi \over 2}} \cr e^{{{\cot 6x} \over {{}\cot 4x}}} & , & {{\pi \over 2} < x < \pi } \cr } } \right.$

is continuous at $x = {\pi \over 2}$, then $9\lambda + 6{\log _e}\mu + {\mu ^6} - {e^{6\lambda }}$ is equal to


1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...