The number of square matrices of order $5$ with entries from the set $\{0,1\}$, such that the sum of all the elements in each row is $1$ and the sum of all the elements in each column is also $1$, is:
If
\[
\begin{vmatrix}
x+1 & x & x \\
x & x+\lambda & x \\
x & x & x+\lambda^2
\end{vmatrix}
= \dfrac{9}{8}\,(103x+81),
\]
then $\lambda,\ \dfrac{\lambda}{3}$ are the roots of the equation:
Let $\mathrm{A}$ be a square matrix such that $\mathrm{AA}^{\mathrm{T}}=\mathrm{I}$. Then $\frac{1}{2} A\left[\left(A+A^T\right)^2+\left(A-A^T\right)^2\right]$ is equal to
Let $\mathbf{A}=\begin{bmatrix} 1 & \tfrac{1}{51} \\[2pt] 0 & 1 \end{bmatrix}$.
If $\mathbf{B}=\begin{bmatrix} 1 & 2 \\ -1 & -1 \end{bmatrix}\mathbf{A}\begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$,
then the sum of all the elements of the matrix $\displaystyle \sum_{n=1}^{50} \mathbf{B}^n$ is equal to:
Let $R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$ be a non-zero $3 \times 3$ matrix, where $x \sin \theta=y \sin \left(\theta+\frac{2 \pi}{3}\right)=z \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0, \theta \in(0,2 \pi)$. For a square matrix $M$, let trace $(M)$ denote the sum of all the diagonal entries of $M$. Then, among the statements:
(I) Trace $(R)=0$
(II) If trace $(\operatorname{adj}(\operatorname{adj}(R))=0$, then $R$ has exactly one non-zero entry.
Let $S_{1}$ and $S_{2}$ be respectively the sets of all $a\in \mathbb{R}\setminus\{0\}$ for which the system of linear equations
$ax+2ay-3az=1$
$(2a+1)x+(2a+3)y+(a+1)z=2$
$(3a+5)x+(a+5)y+(a+2)z=3$
has unique solution and infinitely many solutions. Then
Consider the system of linear equations
$x+y+z=5,\quad x+2y+\lambda^2 z=9,\quad x+3y+\lambda z=\mu,$
where $\lambda,\mu\in\mathbb{R}$. Which of the following statements is NOT correct?