JEE MAIN Matrices Previous Year Questions (PYQs) – Page 1 of 15

JEE MAIN Matrices Previous Year Questions (PYQs) – Page 1 of 15

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If the system of equations $x+\big(\sqrt{2}\sin\alpha\big)y+\big(\sqrt{2}\cos\alpha\big)z=0$ $x+(\cos\alpha)y+(\sin\alpha)z=0$ $x+(\sin\alpha)y-(\cos\alpha)z=0$ has a non-trivial solution, then $\alpha\in\left(0,\frac{\pi}{2}\right)$ is equal to:

1
2
3
4

logo

If $P = \begin{bmatrix} 1 & 0 \\ \tfrac{1}{2} & 1 \end{bmatrix}$, then $P^{50}$ is :

1
2
3
4

logo

Let $A=\begin{bmatrix}1\\1\\1\end{bmatrix}$ and $B=\begin{bmatrix} 9^{2} & -10^{2} & 11^{2}\\ 12^{2} & 13^{2} & -14^{2}\\ -15^{2} & 16^{2} & 17^{2} \end{bmatrix}$, then the value of $A'BA$ is:

1
2
3
4

logo

If $A$ is a $3\times 3$ non-singular matrix such that $AA' = A'A$ and $B = A^{-1}A'$, then $BB'$ equals :

1
2
3
4

logo

Let the sum of the focal distances of the point $P(4,3)$ on the hyperbola $H:\ \dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ be $8\sqrt{\dfrac{5}{3}}$. If for $H$, the length of the latus rectum is $l$ and the product of the focal distances of the point $P$ is $m$, then $9l^{2}+6m$ is equal to:

1
2
3
4

logo

If $\alpha,\beta \ne 0$, and $f(n) = \alpha^{n} + \beta^{n}$ and $\begin{vmatrix} 3 & 1 + f(1) & 1 + f(2) \\ 1+f(1) & 1 + f(2) & 1 + f(3) \\ 1+f(2) & 1 + f(3) & 1 + f(4) \end{vmatrix} = K(1-\alpha)^{2}(1-\beta)^{2}(\alpha-\beta)^{2}$, then $K$ is equal to :

1
2
3
4

logo

For the system of linear equations $\alpha x+y+z=1,\quad x+\alpha y+z=1,\quad x+y+\alpha z=\beta$, which one of the following statements is **NOT** correct?

1
2
3
4

logo

The values of $\lambda$ and $\mu$ for which the system of linear equations \[ \begin{aligned} x + y + z &= 2,\\ x + 2y + 3z &= 5,\\ x + 3y + \lambda z &= \mu \end{aligned} \] has infinitely many solutions are, respectively:

1
2
3
4

logo

Let m and M be respectively the minimum and maximum values of \[ \left| \begin{array}{ccc} \cos^{2}x & 1+\sin^{2}x & \sin 2x\\ 1+\cos^{2}x & \sin^{2}x & \sin 2x\\ \cos^{2}x & \sin^{2}x & 1+\sin 2x \end{array} \right|. \] Then the ordered pair (m, M) is equal to :

1
2
3
4

logo

A value of $\theta \in \left( {0,{\pi \over 3}} \right)$, for which
$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$, is :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...