If the system of equations
$x+\big(\sqrt{2}\sin\alpha\big)y+\big(\sqrt{2}\cos\alpha\big)z=0$
$x+(\cos\alpha)y+(\sin\alpha)z=0$
$x+(\sin\alpha)y-(\cos\alpha)z=0$
has a non-trivial solution, then $\alpha\in\left(0,\frac{\pi}{2}\right)$ is equal to:
Let $A=\begin{bmatrix}1\\1\\1\end{bmatrix}$ and
$B=\begin{bmatrix}
9^{2} & -10^{2} & 11^{2}\\
12^{2} & 13^{2} & -14^{2}\\
-15^{2} & 16^{2} & 17^{2}
\end{bmatrix}$,
then the value of $A'BA$ is:
Let the sum of the focal distances of the point $P(4,3)$ on the hyperbola $H:\ \dfrac{x^{2}}{a^{2}}-\dfrac{y^{2}}{b^{2}}=1$ be $8\sqrt{\dfrac{5}{3}}$. If for $H$, the length of the latus rectum is $l$ and the product of the focal distances of the point $P$ is $m$, then $9l^{2}+6m$ is equal to:
For the system of linear equations $\alpha x+y+z=1,\quad x+\alpha y+z=1,\quad x+y+\alpha z=\beta$, which one of the following statements is **NOT** correct?
The values of $\lambda$ and $\mu$ for which the system of linear equations
\[
\begin{aligned}
x + y + z &= 2,\\
x + 2y + 3z &= 5,\\
x + 3y + \lambda z &= \mu
\end{aligned}
\]
has infinitely many solutions are, respectively:
Let m and M be respectively the minimum and maximum values of
\[
\left|
\begin{array}{ccc}
\cos^{2}x & 1+\sin^{2}x & \sin 2x\\
1+\cos^{2}x & \sin^{2}x & \sin 2x\\
\cos^{2}x & \sin^{2}x & 1+\sin 2x
\end{array}
\right|.
\]
Then the ordered pair (m, M) is equal to :