Let $a>0$. If the function $f(x)=6x^3-45ax^2+108a^2x+1$ attains its local maximum and minimum values at the points $x_1$ and $x_2$ respectively such that $x_1x_2=54$, then $a+x_1+x_2$ is equal to
The set of all real values of $\lambda $ for which thefunction$f(x) = \left( {1 - {{\cos }^2}x} \right)\left( {\lambda + \sin x} \right),x \in \left( { - {\pi \over 2},{\pi \over 2}} \right)$ has exactly one maxima and exactly oneminima, is :
If a right circular cone, having maximum volume, is inscribed in a sphere of radius $3\ \text{cm}$, then the curved surface area (in $\text{cm}^{2}$) of this cone is :
Let $x=-1$ and $x=2$ be the critical points of the function $f(x)=x^{3}+ax^{2}+b\log_{e}|x|+1,;x\neq0$. Let $m$ and $M$ respectively be the absolute minimum and the absolute maximum values of $f$ in the interval $\left[-2,-\dfrac{1}{2}\right]$. Then $|M+m|$ is equal to (take $\log_{e}2=0.7$):
Let $f:\mathbb{R}\to\mathbb{R}$ be a polynomial of degree four having extreme values at $x=4$ and $x=5$. If $\displaystyle \lim_{x\to 0}\frac{f(x)}{x^{2}}=5$, then $f(2)$ is equal to: