JEE MAIN Rectangular Cartesian Coordinates Previous Year Questions (PYQs) – Page 1 of 3

JEE MAIN Rectangular Cartesian Coordinates Previous Year Questions (PYQs) – Page 1 of 3

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

A rod of length eight units moves such that its ends $A$ and $B$ always lie on the lines $x-y+2=0$ and $y+2=0$, respectively. If the locus of the point $P$, that divides the rod $A B$ internally in the ratio $2: 1$ is $9\left(x^2+\alpha y^2+\beta x y+\gamma x+28 y\right)-76=0$, then $\alpha-\beta-\gamma$ is equal to :

1
2
3
4

logo

Let a rectangle $ABCD$ of sides $2$ and $4$ be inscribed in another rectangle $PQRS$ such that the vertices of $ABCD$ lie on the sides of $PQRS$. Let $a$ and $b$ be the sides of $PQRS$ when its area is maximum. Then $(a+b)^2$ is equal to:

1
2
3
4

logo

Let the line $L$ pass through $(1,1,1)$ and intersect the lines $\dfrac{x-1}{2} = \dfrac{y+1}{3} = \dfrac{z-1}{4}$ and $\dfrac{x-3}{1} = \dfrac{y-4}{2} = \dfrac{z}{1}$. Then, which of the following points lies on the line $L$?

1
2
3
4

logo

If the shortest distance between the lines $\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$ and $\dfrac{x}{1}=\dfrac{y}{\alpha}=\dfrac{z-5}{1}$ is $\dfrac{5}{\sqrt6}$, then the sum of all possible values of $\alpha$ is

1
2
3
4

logo

If the length of the perpendicular drawn from the point $P(a,4,2),;a>0$ on the line $\dfrac{x+1}{2}=\dfrac{y-3}{3}=\dfrac{z-1}{-1}$ is $2\sqrt{6}$ units and $Q(\alpha_{1},\alpha_{2},\alpha_{3})$ is the image of the point $P$ in this line, then $a+\sum_{i=1}^{3}\alpha_{i}$ is equal to:

1
2
3
4

logo

Let $(\alpha,\beta,\gamma)$ be the image of the point $(8,5,7)$ in the line $\dfrac{x-1}{2}=\dfrac{y+1}{3}=\dfrac{z-2}{5}$. Then $\alpha+\beta+\gamma$ is:

1
2
3
4

logo

Let A be a fixed point (0, 6) and B be a moving point (2t, 0). Let M be the mid-point of AB and the perpendicular bisector of AB meets the y-axis at C. The locus of the mid-point P of MC is :

1
2
3
4

logo

The area of the quadrilateral $ABCD$ with vertices $A(2,1,1)$, $B(1,2,5)$, $C(-2,-3,5)$ and $D(1,-6,-7)$ is equal to:

1
2
3
4

logo

The angle between the straight lines, whose direction cosines are given by the equations 2l + 2m $-$ n = 0 and mn + nl + lm = 0, is :

1
2
3
4

logo

Let $\binom{n}{r-1}=28$, $\binom{n}{r}=56$ and $\binom{n}{r+1}=70$. Let $A(4\cos t,,4\sin t)$, $B(2\sin t,,-2\cos t)$ and $C(3r-n,,r^{2}-n-1)$ be the vertices of a triangle $ABC$, where $t$ is a parameter. If $(3x-1)^{2}+(3y)^{2}=\alpha$ is the locus of the centroid of triangle $ABC$, then $\alpha$ equals

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...