JEE MAIN Trigonometry Previous Year Questions (PYQs) – Page 1 of 7

JEE MAIN Trigonometry Previous Year Questions (PYQs) – Page 1 of 7

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Given that the inverse trigonometric functions assume principal values only. Let $x,y\in[-1,1]$ such that $\cos^{-1}x-\sin^{-1}y=\alpha$, with $-\dfrac{\pi}{2}\le\alpha\le\pi$. Then, the minimum value of $x^{2}+y^{2}+2xy\sin\alpha$ is:

1
2
3
4

logo

If $\sin \theta + \cos \theta = {1 \over 2}$, then 16(sin(2$\theta$) + cos(4$\theta$) + sin(6$\theta$)) is equal to :

1
2
3
4

logo

The value of $\cos \dfrac{\pi}{22}\cdot \cos \dfrac{\pi}{23}\cdot \ldots \cdot \cos \dfrac{\pi}{210}\cdot \sin \dfrac{\pi}{210}$ is –

1
2
3
4

logo

Let $f_{k}(x)=\dfrac{1}{k}(\sin^{k}x+\cos^{k}x)$ where $x\in\mathbb{R}$ and $k\ge 1$. Then $f_{4}(x)-f_{6}(x)$ equals :

1
2
3
4

logo

If $\tan A$ and $\tan B$ are the roots of the quadratic equation $3x^{2}-10x-25=0$, then the value of $3\sin^{2}(A+B)-10\sin(A+B)\cos(A+B)-25\cos^{2}(A+B)$ is :

1
2
3
4

logo

$ \text{The expression } \dfrac{\tan A}{1-\cot A,} + \dfrac{\cot A}{1-\tan A,} \text{ can be written as:} $

1
2
3
4

logo

Let $f(x) = 3{\sin ^4}x + 10{\sin ^3}x + 6{\sin ^2}x - 3$, $x \in \left[ { - {\pi \over 6},{\pi \over 2}} \right]$. Then, f is :

1
2
3
4

logo

Suppose $\theta\in[0,\tfrac{\pi}{4}]$ is a solution of $4\cos\theta-3\sin\theta=1$. Then $\cos\theta$ is:

1
2
3
4

logo

Suppose $\theta\in\left[0,\tfrac{\pi}{4}\right]$ is a solution of $4\cos\theta-3\sin\theta=1$. Then $\cos\theta$ is:

1
2
3
4

logo

Let $f_k(x)=\dfrac{1}{k}\left(\sin^{k}x+\cos^{k}x\right)$ for $k=1,2,3,\ldots$ Then for all $x\in\mathbb{R}$, the value of $f_4(x)-f_6(x)$ is equal to

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...