JEE MAIN Vector Previous Year Questions (PYQs) – Page 10 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 10 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The distance of the point $P(4,6,-2)$ from the line passing through the point $(-3,2,3)$ and parallel to a line with direction ratios $3,3,-1$ is equal to:

1
2
3
4

logo

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $8\hat{i}-6\hat{j}$ and $3\hat{i}+4\hat{j}-12\hat{k}$, is :

1
2
3
4

logo

Consider the lines $L_{1}$ and $L_{2}$ given by $L_{1}:\ \dfrac{x-1}{2}=\dfrac{y-3}{1}=\dfrac{z-2}{2}$ $L_{2}:\ \dfrac{x-2}{1}=\dfrac{y-2}{2}=\dfrac{z-3}{3}$ A line $L_{3}$ having direction ratios $1,-1,-2$ intersects $L_{1}$ and $L_{2}$ at the points $P$ and $Q$ respectively. Then the length of line segment $PQ$ is:

1
2
3
4

logo

Let $\vec a=3\hat{i}+2\hat{j}+x\hat{k}$ and $\vec b=\hat{i}-\hat{j}+\hat{k}$, for some real $x$. Then $\left|\vec a\times\vec b\right|=r$ is possible if:

1
2
3
4

logo

Let $L_1:\ \vec r=(\hat i-\hat j+2\hat k)+\lambda(\hat i-\hat j+2\hat k),\ \lambda\in\mathbb R,$ $L_2:\ \vec r=(\hat j-\hat k)+\mu(3\hat i+\hat j+p\hat k),\ \mu\in\mathbb R,$ and $L_3:\ \vec r=\delta(\ell\hat i+m\hat j+n\hat k),\ \delta\in\mathbb R,$ be three lines such that $L_1$ is perpendicular to $L_2$ and $L_3$ is perpendicular to both $L_1$ and $L_2$. Then, the point which lies on $L_3$ is:

1
2
3
4

logo

Let $\overrightarrow a $ and $\overrightarrow b $ be the vectors along the diagonals of a parallelogram having area $2\sqrt 2 $. Let the angle between $\overrightarrow a $ and $\overrightarrow b $ be acute, $|\overrightarrow a | = 1$, and $|\overrightarrow a \,.\,\overrightarrow b | = |\overrightarrow a \times \overrightarrow b |$. If $\overrightarrow c = 2\sqrt 2 \left( {\overrightarrow a \times \overrightarrow b } \right) - 2\overrightarrow b $, then an angle between $\overrightarrow b $ and $\overrightarrow c $ is :

1
2
3
4

logo

Let $\vec a=\hat i+\alpha\hat j+\beta\hat k,\ \alpha,\beta\in\mathbb R$. Let $\vec b$ be such that the angle between $\vec a$ and $\vec b$ is $\dfrac{\pi}{4}$ and $|\vec b|^{2}=6$. If $\vec a\cdot\vec b=3\sqrt{2}$, then the value of $(\alpha^{2}+\beta^{2})\,|\vec a\times\vec b|^{2}$ is:

1
2
3
4

logo

Let a unit vector $\hat{\mathbf{u}}=x\mathbf{i}+y\mathbf{j}+z\mathbf{k}$ make angles $\dfrac{\pi}{2},\ \dfrac{\pi}{3}$ and $\dfrac{2\pi}{3}$ with the vectors $\dfrac{1}{\sqrt{2}}\mathbf{i}+\dfrac{1}{\sqrt{2}}\mathbf{k},\ \dfrac{1}{\sqrt{2}}\mathbf{j}+\dfrac{1}{\sqrt{2}}\mathbf{k},\ \dfrac{1}{\sqrt{2}}\mathbf{i}+\dfrac{1}{\sqrt{2}}\mathbf{j}$ respectively. If $\vec{\mathbf{v}}=\dfrac{1}{\sqrt{2}}\mathbf{i}+\dfrac{1}{\sqrt{2}}\mathbf{j}+\dfrac{1}{\sqrt{2}}\mathbf{k}$, then $|\hat{\mathbf{u}}-\vec{\mathbf{v}}|^{2}$ is equal to:

1
2
3
4

logo

The lines
$\overrightarrow r = \left( {\widehat i - \widehat j} \right) + l\left( {2\widehat i + \widehat k} \right)$ and
$\overrightarrow r = \left( {2\widehat i - \widehat j} \right) + m\left( {\widehat i + \widehat j + \widehat k} \right)$

1
2
3
4

logo

Let $\vec{a}=\hat{i}+2\hat{j}+3\hat{k}$, $\vec{b}=2\hat{i}+3\hat{j}-5\hat{k}$ and $\vec{c}=3\hat{i}-\hat{j}+\lambda\hat{k}$ be three vectors. Let $\vec{r}$ be a unit vector along $\vec{b}+\vec{c}$. If $\vec{r}\cdot\vec{a}=3$, then $3\lambda$ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...