JEE MAIN Vector Previous Year Questions (PYQs) – Page 11 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 11 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The foot of the perpendicular from the point $(2,0,5)$ on the line $\dfrac{x+1}{2}=\dfrac{y-1}{5}=\dfrac{z+1}{-1}$ is $(\alpha,\beta,\gamma)$. Then, which of the following is NOT correct?

1
2
3
4

logo

Let $\vec a$ and $\vec b$ be two vectors such that $|\vec b|=1$ and $|\vec b\times\vec a|=2$. Then $|(\vec b\times\vec a)-\vec b|^{2}$ is equal to:

1
2
3
4

logo

Let $P(3,2,3)$, $Q(4,6,2)$ and $R(7,3,2)$ be the vertices of $\triangle PQR$. The angle $\angle QPR$ is:

1
2
3
4

logo

Let $\vec{a}=\hat{i}+4\hat{j}+2\hat{k}$, $\vec{b}=3\hat{i}-2\hat{j}+7\hat{k}$ and $\vec{c}=2\hat{i}-\hat{j}+4\hat{k}$. If a vector $\vec{d}$ satisfies $\vec{d}\times\vec{b}=\vec{c}\times\vec{b}$ and $\vec{d}\cdot\vec{a}=24$, then $|\vec{d}|^{2}$ is equal to:

1
2
3
4

logo

Let O be the origin. Let $\overrightarrow{OP} = x\widehat i + y\widehat j - \widehat k$ and $\overrightarrow{OQ} = -\widehat i + 2\widehat j + 3x\widehat k$, $x, y \in R, x > 0$, be such that $|\overrightarrow{PQ}| = \sqrt{20}$ and the vector $\overrightarrow{OP}$ is perpendicular $\overrightarrow{OQ}$. If $\overrightarrow{OR} = 3\widehat i + z\widehat j - 7\widehat k$, $z \in R$, is coplanar with $\overrightarrow{OP}$ and $\overrightarrow{OQ}$, then the value of $x^2 + y^2 + z^2$ is equal to :

1
2
3
4

logo

Let three vectors $\vec a=\alpha\hat i+4\hat j+2\hat k,;\vec b=5\hat i+3\hat j+4\hat k,;\vec c=x\hat i+y\hat j+z\hat k$ form a triangle such that $\vec c=\vec a-\vec b$ and the area of the triangle is $5\sqrt{6}$. If $\alpha$ is a positive real number, then $\lvert\vec c\rvert$ is equal to:

1
2
3
4

logo

Let $\overrightarrow{OA}=\vec a,\ \overrightarrow{OB}=12\vec a+4\vec b$ and $\overrightarrow{OC}=\vec b$, where $O$ is the origin. If $S$ is the parallelogram with adjacent sides $OA$ and $OC$, then $\dfrac{\text{area of quadrilateral }OABC}{\text{area of }S}$ is equal to:

1
2
3
4

logo

Let $\vec{\alpha}=3\hat{i}+\hat{j}$ and $\vec{\beta}=2\hat{i}-\hat{j}+3\hat{k}$. If $\vec{\beta}=\vec{\beta}{1}-\vec{\beta}{2}$, where $\vec{\beta}{1}$ is parallel to $\vec{\alpha}$ and $\vec{\beta}{2}$ is perpendicular to $\vec{\alpha}$, then $\vec{\beta}{1}\times\vec{\beta}{2}$ is equal to:

1
2
3
4

logo

If the vector $\vec{b} = 3\vec{j} + 4\vec{k}$ is written as the sum of a vector $\vec{b_1}$ parallel to $\vec{a} = \vec{i} + \vec{j}$ and a vector $\vec{b_2}$ perpendicular to $\vec{a}$, then $\vec{b_1} \times \vec{b_2}$ is equal to:

1
2
3
4

logo

A vector $\overrightarrow a $ has components 3p and 1 with respect to a rectangular cartesian system. This system is rotated through a certain angle about the origin in the counter clockwise sense. If, with respect to new system, $\overrightarrow a $ has components p + 1 and $\sqrt {10} $, then the value of p is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...