JEE MAIN Vector Previous Year Questions (PYQs) – Page 12 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 12 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $|\vec a|=2$, $|\vec b|=3$ and the angle between the vectors $\vec a$ and $\vec b$ be $\dfrac{\pi}{4}$. Then $|(\vec a+2\vec b)\times(2\vec a-3\vec b)|^2$ is equal to:


1
2
3
4

logo

Let $\vec a=3\hat i+\hat j-2\hat k,\ \vec b=4\hat i+\hat j+7\hat k$ and $\vec c=\hat i-3\hat j+4\hat k$ be three vectors. If a vector $\vec p$ satisfies $\vec p\times\vec b=\vec c\times\vec b$ and $\vec p\cdot\vec a=0$, then $\vec p\cdot(\hat i-\hat j-\hat k)$ is equal to:

1
2
3
4

logo

The distance of the point $Q(0,2,-2)$ from the line passing through the point $P(5,-4,3)$ and perpendicular to the lines $\ \vec r = (-3\hat i + 2\hat k) + \lambda(2\hat i + 3\hat j + 5\hat k),\ \lambda\in\mathbb R,$ and $\ \vec r = (\hat i - 2\hat j + \hat k) + \mu(-\hat i + 3\hat j + 2\hat k),\ \mu\in\mathbb R,$ is:

1
2
3
4

logo

Let $\overrightarrow a $ and $\overrightarrow b $ be two vectors such that $\left| {2\overrightarrow a + 3\overrightarrow b } \right| = \left| {3\overrightarrow a + \overrightarrow b } \right|$ and the angle between $\overrightarrow a $ and $\overrightarrow b $ is 60$^\circ$. If ${1 \over 8}\overrightarrow a $ is a unit vector, then $\left| {\overrightarrow b } \right|$ is equal to :

1
2
3
4

logo

Let $\overrightarrow{OA}=2\vec a,\ \overrightarrow{OB}=6\vec a+5\vec b,\ \overrightarrow{OC}=3\vec b$, where $O$ is the origin. If the area of the parallelogram with adjacent sides $\overrightarrow{OA}$ and $\overrightarrow{OC}$ is $15$ sq. units, then the area (in sq. units) of the quadrilateral $OABC$ is equal to:

1
2
3
4

logo

Let $\overrightarrow a = \alpha \widehat i + 2\widehat j - \widehat k$ and $\overrightarrow b = - 2\widehat i + \alpha \widehat j + \widehat k$, where $\alpha \in R$. If the area of the parallelogram whose adjacent sides are represented by the vectors $\overrightarrow a $ and $\overrightarrow b $ is $\sqrt {15({\alpha ^2} + 4)} $, then the value of $2{\left| {\overrightarrow a } \right|^2} + \left( {\overrightarrow a \,.\,\overrightarrow b } \right){\left| {\overrightarrow b } \right|^2}$ is equal to :

1
2
3
4

logo

If $\vec{a}$ is a nonzero vector such that its projections on the vectors $2\hat{i} - \hat{j} + 2\hat{k}$, $\hat{i} + 2\hat{j} - 2\hat{k}$ and $\hat{k}$ are equal, then a unit vector along $\vec{a}$ is:

1
2
3
4

logo

For a triangle $ABC$, $\overrightarrow{AB}=-2\hat i+\hat j+3\hat k$ $\overrightarrow{CB}=\alpha\hat i+\beta\hat j+\gamma\hat k$ $\overrightarrow{CA}=4\hat i+3\hat j+\delta\hat k$ If $\delta>0$ and the area of the triangle $ABC$ is $5\sqrt{6}$, then $\overrightarrow{CB}\cdot\overrightarrow{CA}$ is equal to:

1
2
3
4

logo

Let a, b c $ \in $ R be such that a2 + b2 + c2 = 1. If $a\cos \theta = b\cos \left( {\theta + {{2\pi } \over 3}} \right) = c\cos \left( {\theta + {{4\pi } \over 3}} \right)$, where${\theta = {\pi \over 9}}$, then the angle between the vectors $a\widehat i + b\widehat j + c\widehat k$ and $b\widehat i + c\widehat j + a\widehat k$ is

1
2
3
4

logo

Let $\overrightarrow a $ and $\overrightarrow b $ be two non-zero vectors perpendicular to each other and $|\overrightarrow a | = |\overrightarrow b |$. If $|\overrightarrow a \times \overrightarrow b | = |\overrightarrow a |$, then the angle between the vectors $\left( {\overrightarrow a + \overrightarrow b + \left( {\overrightarrow a \times \overrightarrow b } \right)} \right)$ and ${\overrightarrow a }$ is equal to :

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...