JEE MAIN Vector Previous Year Questions (PYQs) – Page 13 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 13 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If the vectors $\vec a=\lambda\,\hat i+\mu\,\hat j+4\,\hat k$, $\vec b=-2\,\hat i+4\,\hat j-2\,\hat k$ and $\vec c=2\,\hat i+3\,\hat j+\hat k$ are coplanar and the projection of $\vec a$ on the vector $\vec b$ is $\sqrt{54}$ units, then the sum of all possible values of $\lambda+\mu$ is equal to:

1
2
3
4

logo

Let ABCD be a quadrilateral. If E and F are the mid points of the diagonals AC and BD respectively and $\overrightarrow{(AB-BC)}+\overrightarrow{(AD-DC)}=k\,\overrightarrow{FE}$, then $k$ is equal to:

1
2
3
4

logo

Let $(\alpha,\beta,\gamma)$ be the mirror image of the point $(2,3,5)$ in the line \[ \frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}. \] Then, $\,2\alpha+3\beta+4\gamma\,$ is equal to:

1
2
3
4

logo

In a triangle ABC, if $|\overrightarrow {BC} | = 8,|\overrightarrow {CA} | = 7,|\overrightarrow {AB} | = 10$, then the projection of the vector $\overrightarrow {AB} $ on $\overrightarrow {AC} $ is equal to :

1
2
3
4

logo

Let $\overrightarrow a = \alpha \widehat i + 3\widehat j - \widehat k$, $\overrightarrow b = 3\widehat i - \beta \widehat j + 4\widehat k$ and $\overrightarrow c = \widehat i + 2\widehat j - 2\widehat k$ where $\alpha ,\,\beta \in R$, be three vectors. If the projection of $\overrightarrow a $ on $\overrightarrow c $ is ${{10} \over 3}$ and $\overrightarrow b \times \overrightarrow c = - 6\widehat i + 10\widehat j + 7\widehat k$, then the value of $\alpha + \beta $ is equal to :

1
2
3
4

logo

Between the following two statements: Statement I: Let $\vec{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \hat{k}$. Then the vector $\vec{r}$ satisfying $\vec{a} \times \vec{r} = \vec{a} \times \vec{b}$ and $\vec{a} \cdot \vec{r} = 0$ is of magnitude $\sqrt{10}$. Statement II: In a triangle $ABC$, $\cos 2A + \cos 2B + \cos 2C \geq -\dfrac{3}{2}$.

1
2
3
4

logo

If a unit vector $\vec{a}$ makes angles $\dfrac{\pi}{3}$ with $\hat{i}$, $\dfrac{\pi}{4}$ with $\hat{j}$ and $\theta\in(0,\pi)$ with $\hat{k}$, then a value of $\theta$ is:

1
2
3
4

logo

If $\vec a=\hat i+2\hat k$, $\vec b=\hat i+\hat j+\hat k$, $\vec c=7\hat i-3\hat j+4\hat k$, $\ \ \vec r\times\vec b+\vec b\times\vec c=\vec 0$ and $\vec r\cdot\vec a=0$. Then $\ \vec r\cdot\vec c$ is equal to:

1
2
3
4

logo

Let $S$ be the set of all values of $\lambda$ for which the shortest distance between the lines $\dfrac{x-\lambda}{0}=\dfrac{y-3}{4}=\dfrac{z+6}{1}$ and $\dfrac{x+\lambda}{3}=\dfrac{y}{-4}=\dfrac{z-6}{0}$ is $13$. Then $8\Big|\displaystyle\sum_{\lambda\in S}\lambda\Big|$ is equal to:

1
2
3
4

logo

Let \(\vec{a} = 4\hat{i} + 3\hat{j}\) and \(\vec{b} = 3\hat{i} - 4\hat{j} + 5\hat{k}\). If \(\vec{c}\) is a vector such that \[ \vec{c}\cdot(\vec{a}\times\vec{b}) + 25 = 0,\qquad \vec{c}\cdot(\hat{i}+\hat{j}+\hat{k}) = 4, \] and the projection of \(\vec{c}\) on \(\vec{a}\) is \(1\), then the projection of \(\vec{c}\) on \(\vec{b}\) equals:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...