JEE MAIN Vector Previous Year Questions (PYQs) – Page 14 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 14 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

The line $L_1$ is parallel to the vector $\vec{a} = -3\hat{i} + 2\hat{j} + 4\hat{k}$ and passes through the point $(7, 6, 2)$, and the line $L_2$ is parallel to the vector $\vec{b} = 2\hat{i} + \hat{j} + 3\hat{k}$ and passes through the point $(5, 3, 4)$. The shortest distance between the lines $L_1$ and $L_2$ is:

1
2
3
4

logo

The vertices $B$ and $C$ of a $\triangle ABC$ lie on the line $\dfrac{x+2}{3}=\dfrac{y-1}{0}=\dfrac{z}{4}$ such that $BC=5$ units. Then the area (in sq. units) of this triangle, given that the point $A(1,-1,2)$, is:

1
2
3
4

logo

Let $\vec a=2\hat i+\alpha\hat j+\hat k,\ \vec b=-\hat i+\hat k,\ \vec c=\beta\hat j-\hat k$, where $\alpha,\beta$ are integers and $\alpha\beta=-6$. Let the values of the ordered pair $(\alpha,\beta)$ for which the area of the parallelogram whose diagonals are $\vec a+\vec b$ and $\vec b+\vec c$ is $\dfrac{\sqrt{21}}{2}$ be $(\alpha_1,\beta_1)$ and $(\alpha_2,\beta_2)$. Then $\alpha_1^{,2}+\beta_1^{,2}-\alpha_2\beta_2$ is equal to:

1
2
3
4

logo

Let $\vec{a} = 2\hat{i} - 3\hat{j} + \hat{k}$, $\vec{b} = 3\hat{i} + 2\hat{j} + 5\hat{k}$, and a vector $\vec{c}$ be such that $(\vec{a} - \vec{c}) \times \vec{b} = -18\hat{i} - 3\hat{j} + 12\hat{k}$ and $\vec{a} \cdot \vec{c} = 3$. If $\vec{b} \times \vec{c} = \vec{d}$, then $|\vec{a} \cdot \vec{d}|$ is equal to:

1
2
3
4

logo

In a triangle $ABC$, right angled at the vertex $A$, if the position vectors of $A,B$ and $C$ are respectively $3\hat{i} + \hat{j} - \hat{k}$, $-\hat{i} + 3\hat{j} + p\hat{k}$ and $5\hat{i} + q\hat{j} - 4\hat{k}$, then the point $(p,q)$ lies on a line:

1
2
3
4

logo

$ \text{Let A, B, C be three points whose position vectors respectively are } \vec{a} = \hat{i} + 4\hat{j} + 3\hat{k}, ; \vec{b} = 2\hat{i} + \alpha \hat{j} + 4\hat{k}, ; \alpha \in \mathbb{R}, ; \vec{c} = 3\hat{i} - 2\hat{j} + 5\hat{k}. ; \text{If } \alpha \text{ is the smallest positive integer for which } \vec{a}, \vec{b}, \vec{c} \text{ are non-collinear, then the length of the median in } \triangle ABC \text{ through A is :}$

1
2
3
4

logo

The shortest distance between the lines $\dfrac{x}{2} = \dfrac{y}{2} = \dfrac{z}{1}$ and $\dfrac{x + 2}{-1} = \dfrac{y - 4}{8} = \dfrac{z - 5}{4}$ lies in the interval:

1
2
3
4

logo

Let a unit vector $\overrightarrow{OP}$ make angles $\alpha,\beta,\gamma$ with the positive directions of the coordinate axes $OX, OY, OZ$ respectively, where $\beta\in\left(0,\tfrac{\pi}{2}\right)$. If $\overrightarrow{OP}$ is perpendicular to the plane through points $(1,2,3)$, $(2,3,4)$ and $(1,5,7)$, then which one of the following is true?

1
2
3
4

logo

Let $\vec a=-5\hat i+\hat j-3\hat k$, $\vec b=\hat i+2\hat j-4\hat k$ and $\vec c=\big(((\vec a\times\vec b)\times\hat i)\times\hat i\big)\times\hat i$. Then $\ \vec c\cdot(-\hat i+\hat j+\hat k)$ is equal to:

1
2
3
4

logo

Let $L_1:\ \dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}$ and $L_2:\ \dfrac{x-2}{3}=\dfrac{y-4}{4}=\dfrac{z-5}{5}$ be two lines. Which of the following points lies on the line of the shortest distance between $L_1$ and $L_2$?

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...