JEE MAIN Vector Previous Year Questions (PYQs) – Page 5 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 5 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

If the shortest distance between the lines $\dfrac{x-1}{2} = \dfrac{y-2}{3} = \dfrac{z-3}{\lambda}$ and $\dfrac{x-2}{1} = \dfrac{y-4}{4} = \dfrac{z-5}{5}$ is $\dfrac{1}{\sqrt{3}}$, then the sum of all possible values of $\lambda$ is:


1
2
3
4

logo

Let $\vec a = 3\hat{i}-\hat{j}+2\hat{k}$, $\vec b=\vec a \times (\hat{i}-2\hat{k})$ and $\vec c=\vec b \times \hat{k}$. Then the projection of $\vec c-2\hat{j}$ on $\vec a$ is:

1
2
3
4

logo

$ \text{If the points with position vectors } \alpha\hat{i}+10\hat{j}+13\hat{k},; 6\hat{i}+11\hat{j}+11\hat{k},; \dfrac{9}{2}\hat{i}+\beta\hat{j}-8\hat{k} \text{ are collinear, then } (19\alpha-6\beta)^2 \text{ is equal to:} $

1
2
3
4

logo

Let $\sqrt{3}\,\hat{i}+\hat{j}$, $\ \hat{i}+\sqrt{3}\,\hat{j}$ and $\ \beta\,\hat{i}+(1-\beta)\,\hat{j}$ respectively be the position vectors of the points $A$, $B$ and $C$ with respect to the origin $O$. If the distance of $C$ from the bisector of the acute angle between $\overrightarrow{OA}$ and $\overrightarrow{OB}$ is $\dfrac{3}{\sqrt{2}}$, then the sum of all possible values of $\beta$ is:

1
2
3
4

logo

$ \text{Let } S \text{ be the set of all } a \in \mathbb{R} \text{ for which the angle between the vectors } \vec{u}=a(\log_{e} b),\hat{i}-6\hat{j}+3\hat{k} \text{ and } \vec{v}=(\log_{e} b),\hat{i}+2\hat{j}+2a(\log_{e} b),\hat{k},\ (b>1), \text{ is acute. Then } S \text{ is equal to:} $

1
2
3
4

logo

The position vectors of the vertices $A,B,C$ of a triangle are $2\hat i-3\hat j+3\hat k$, $2\hat i+2\hat j+3\hat k$ and $-\hat i+\hat j+3\hat k$ respectively. Let $l$ denote the length of the angle bisector $AD$ of $\angle BAC$ (where $D$ is on the line segment $BC$). Then $2l^{2}$ equals:

1
2
3
4

logo

et $A(x,y,z)$ be a point in $xy$-plane, which is equidistant from three points $(0,3,2)$, $(2,0,3)$ and $(0,0,1)$. Let $B=(1,4,-1)$ and $C=(2,0,-2)$. Then among the statements (S1): $\triangle ABC$ is an isosceles right angled triangle, and (S2): the area of $\triangle ABC$ is $\dfrac{9\sqrt{2}}{2}$,

1
2
3
4

logo

Let $\vec{u}$ be a vector coplanar with the vectors $\vec{a}=2\hat{i}+3\hat{j}-\hat{k}$ and $\vec{b}=\hat{j}+\hat{k}$. If $\vec{u}$ is perpendicular to $\vec{a}$ and $\vec{u}\cdot\vec{b}=24$, then $\lvert\vec{u}\rvert^{2}$ is equal to :

1
2
3
4

logo

Let $\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k$ ${a_i} > 0$, $i = 1,2,3$ be a vector which makes equal angles with the coordinate axes OX, OY and OZ. Also, let the projection of $\overrightarrow a $ on the vector $3\widehat i + 4\widehat j$ be 7. Let $\overrightarrow b $ be a vector obtained by rotating $\overrightarrow a $ with 90$^\circ$. If $\overrightarrow a $, $\overrightarrow b $ and x-axis are coplanar, then projection of a vector $\overrightarrow b $ on $3\widehat i + 4\widehat j$ is equal to:

1
2
3
4

logo

Let $\vec a,\vec b,\vec c$ be three non-zero vectors such that $\vec b$ and $\vec c$ are non-collinear. If $\vec a+5\vec b$ is collinear with $\vec c$, $\ \vec b+6\vec c$ is collinear with $\vec a$ and $\vec a+\alpha\vec b+\beta\vec c=\vec 0$, then $\alpha+\beta$ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...