JEE MAIN Vector Previous Year Questions (PYQs) – Page 7 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 7 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $\vec{a} = 2\hat{i} + 7\hat{j} - \hat{k}$, $\vec{b} = 3\hat{i} + 5\hat{k}$ and $\vec{c} = \hat{i} - \hat{j} + 2\hat{k}$. Let $\vec{d}$ be a vector which is perpendicular to both $\vec{a}$ and $\vec{b}$, and $\vec{c} \cdot \vec{d} = 12$. Then $(-\hat{i} + \hat{j} - \hat{k}) \cdot (\vec{c} \times \vec{d})$ is equal to:

1
2
3
4

logo

Let $P(3,2,3)$, $Q(4,6,2)$ and $R(7,3,2)$ be the vertices of $\triangle PQR$. Then, the angle $\angle QPR$ is:

1
2
3
4

logo

Let $\vec a=6\hat i+\hat j-\hat k$ and $\vec b=\hat i+\hat j$. If $\vec c$ is a vector such that $|\vec c|\ge 6$, $\ \vec a\cdot\vec c=6|\vec c|$, $|\vec c-\vec a|=2\sqrt2$ and the angle between $\vec a\times\vec b$ and $\vec c$ is $60^\circ$, then $|(,(\vec a\times\vec b)\times\vec c,)|$ equals:

1
2
3
4

logo

Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = \hat{j} - \hat{k}$, and a vector $\vec{b}$ be such that $\vec{a} \times \vec{b} = \vec{c}$ and $\vec{a} \cdot \vec{b} = 3$. Then $|\vec{b}|$ equals:

1
2
3
4

logo

Let the position vectors of two points P and Q be 3$\widehat i$ $-$ $\widehat j$ + 2$\widehat k$ and $\widehat i$ + 2$\widehat j$ $-$ 4$\widehat k$, respectively. Let R and S be two points such that the direction ratios of lines PR and QS are (4, $-$1, 2) and ($-$2, 1, $-$2), respectively. Let lines PR and QS intersect at T. If the vector $\overrightarrow {TA} $ is perpendicular to both $\overrightarrow {PR} $ and $\overrightarrow {QS} $ and the length of vector $\overrightarrow {TA} $ is $\sqrt 5 $ units, then the modulus of a position vector of A is :

1
2
3
4

logo

If the two lines ${l_1}:{{x - 2} \over 3} = {{y + 1} \over {-2}},\,z = 2$ and ${l_2}:{{x - 1} \over 1} = {{2y + 3} \over \alpha } = {{z + 5} \over 2}$ are perpendicular, then an angle between the lines l2 and ${l_3}:{{1 - x} \over 3} = {{2y - 1} \over { - 4}} = {z \over 4}$ is :

1
2
3
4

logo

Let $\vec{a},\vec{b},\vec{c}$ be three coplanar concurrent vectors such that the angles between any two of them are the same. If the product of their magnitudes is $14$ and $ (\vec{a}\times\vec{b})\cdot(\vec{b}\times\vec{c}) +(\vec{b}\times\vec{c})\cdot(\vec{c}\times\vec{a}) +(\vec{c}\times\vec{a})\cdot(\vec{a}\times\vec{b})=168, $ then $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is equal to:

1
2
3
4

logo

If the points $\mathbf{P}$ and $\mathbf{Q}$ are respectively the circumcenter and the orthocentre of a $\triangle ABC$, then $\overrightarrow{PA} + \overrightarrow{PB} + \overrightarrow{PC}$ is equal to:

1
2
3
4

logo

>Let $A, B, C$ be three points in xy-plane, whose position vector are given by $\sqrt{3} \hat{i}+\hat{j}, \hat{i}+\sqrt{3} \hat{j}$ and $a \hat{i}+(1-a) \hat{j}$ respectively with respect to the origin O . If the distance of the point C from the line bisecting the angle between the vectors $\overrightarrow{\mathrm{OA}}$ and $\overrightarrow{\mathrm{OB}}$ is $\frac{9}{\sqrt{2}}$, then the sum of all the possible values of $a$ is :

1
2
3
4

logo

Let $\overrightarrow{OA}=\vec a,\ \overrightarrow{OB}=12\vec a+4\vec b$ and $\overrightarrow{OC}=\vec b$, where $O$ is the origin. If $S$ is the parallelogram with adjacent sides $OA$ and $OC$, then $\dfrac{\text{area of the quadrilateral }OABC}{\text{area of }S}$ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...