JEE MAIN Vector Previous Year Questions (PYQs) – Page 8 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 8 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let the values of $\lambda$ for which the shortest distance between the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$
and $\frac{x-\lambda}{3} = \frac{y-4}{4} = \frac{z-5}{5}$ is $\frac{1}{\sqrt{6}}$ be $\lambda_1$ and $\lambda_2$. Then the radius of the circle passing through the
points $(0, 0), (\lambda_1, \lambda_2)$ and $(\lambda_2, \lambda_1)$ is

1
2
3
4

logo

For any vector $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$, with $10|a_i| < 1, \; i = 1, 2, 3$, consider the following statements: (A): $\max \{|a_1|, |a_2|, |a_3|\} \le |\vec{a}|$ (B): $|\vec{a}| \le 3 \max \{|a_1|, |a_2|, |a_3|\}$

1
2
3
4

logo

Let $\overrightarrow a = \widehat i + \widehat j + 2\widehat k$, $\overrightarrow b = 2\widehat i - 3\widehat j + \widehat k$ and $\overrightarrow c = \widehat i - \widehat j + \widehat k$ be three given vectors. Let $\overrightarrow v $ be a vector in the plane of $\overrightarrow a $ and $\overrightarrow b $ whose projection on $\overrightarrow c $ is ${2 \over {\sqrt 3 }}$. If $\overrightarrow v \,.\,\widehat j = 7$, then $\overrightarrow v \,.\,\left( {\widehat i + \widehat k} \right)$ is equal to :

1
2
3
4

logo

Let $\vec a=a_1\hat i+a_2\hat j+a_3\hat k$ and $\vec b=b_1\hat i+b_2\hat j+b_3\hat k$ be two vectors such that $|\vec a|=1,\ \vec a\cdot\vec b=2$ and $|\vec b|=4$. If $\vec c=2(\vec a\times\vec b)-3\vec b$, then the angle between $\vec b$ and $\vec c$ is:

1
2
3
4

logo

Let $\overrightarrow{a} = \hat{i} + 2\hat{j} - 3\hat{k}$ and $\overrightarrow{b} = 2\hat{i} - 3\hat{j} + 5\hat{k}$. If $\overrightarrow{r} \times \overrightarrow{a} = \overrightarrow{b} \times \overrightarrow{r}$, $\overrightarrow{r} \cdot (\alpha \hat{i} + 2\hat{j} + \hat{k}) = 3$ and $\overrightarrow{r} \cdot (2\hat{i} + 5\hat{j} - \alpha \hat{k}) = -1$, $\alpha \in \mathbb{R}$, then the value of $\alpha + |\overrightarrow{r}|^2$ is equal to :

1
2
3
4

logo

The set of all $\alpha$ for which the vectors $\vec a=\alpha t,\hat i+6,\hat j-3,\hat k$ and $\vec b=t,\hat i-2,\hat j-2\alpha t,\hat k$ are inclined at an obtuse angle for all $t\in\mathbb{R}$ is:

1
2
3
4

logo

Let $\vec{a}=2\hat{i}+\hat{j}-2\hat{k}$ and $\vec{b}=\hat{i}+\hat{j}$. Let $\vec{c}$ be a vector such that $|\vec{c}-\vec{a}|=3$, $|(\vec{a}\times\vec{b})\times\vec{c}|=3$ and the angle between $\vec{c}$ and $\vec{a}\times\vec{b}$ is $30^\circ$. Then $\vec{a}\cdot\vec{c}$ is equal to :

1
2
3
4

logo

Let $\vec{a}$ be a non-zero vector parallel to the line of intersection of the two planes described by $\hat{i} + \hat{j}, \; \hat{i} + \hat{k}$ and $\hat{i} - \hat{j}, \; \hat{j} - \hat{k}$. If $\theta$ is the angle between the vector $\vec{a}$ and the vector $\vec{b} = 2\hat{i} - 2\hat{j} + \hat{k}$ and $\vec{a} \cdot \vec{b} = 6$, then the ordered pair $(\theta, |\vec{a} \times \vec{b}|)$ is equal to:

1
2
3
4

logo

Let $(\alpha,\beta,\gamma)$ be the foot of the perpendicular from the point $(1,2,3)$ on the line \[ \frac{x+3}{5}=\frac{y-1}{2}=\frac{z+4}{3}. \] Then $19(\alpha+\beta+\gamma)$ is equal to:

1
2
3
4

logo

The length of the perpendicular from the point $(2,-1,4)$ on the straight line $\displaystyle \frac{x+3}{10}=\frac{y-2}{-7}=\frac{z}{1}$ is:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...