JEE MAIN Vector Previous Year Questions (PYQs) – Page 9 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 9 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $\vec{\alpha}=4\hat{i}+3\hat{j}+5\hat{k}$ and $\vec{\beta}=\hat{i}+2\hat{j}-4\hat{k}$. Let $\vec{\beta}_{1}$ be parallel to $\vec{\alpha}$ and $\vec{\beta}_{2}$ be perpendicular to $\vec{\alpha}$. If $\vec{\beta}=\vec{\beta}_{1}+\vec{\beta}_{2}$, then the value of $5\,\vec{\beta}_{2}\cdot(\hat{i}+\hat{j}+\hat{k})$ is:

1
2
3
4

logo

Let $\vec a,\vec b,\vec c$ be three non-zero vectors such that $\vec b$ and $\vec c$ are non-collinear. If $\ \vec a+5\vec b\ $ is collinear with $\vec c$, and $\ \vec b+6\vec c\ $ is collinear with $\vec a$, and $\ \vec a+\alpha,\vec b+\beta,\vec c=\vec 0$, then $\alpha+\beta$ is equal to:

1
2
3
4

logo

Let $\vec a=\hat i+2\hat j+\hat k$ and $\vec b=2\hat i+\hat j-\hat k$. Let $\vec c$ be a unit vector in the plane of the vectors $\vec a$ and $\vec b$ and be perpendicular to $\vec a$. Then such a vector $\vec c$ is:

1
2
3
4

logo

Let $A(2,3,5)$ and $C(-3,4,-2)$ be opposite vertices of a parallelogram $ABCD$. If the diagonal $\overrightarrow{BD}= \hat{i}+2\hat{j}+3\hat{k}$, then the area of the parallelogram is equal to:

1
2
3
4

logo

Let $\overrightarrow a = \widehat i + \widehat j - \widehat k$ and $\overrightarrow c = 2\widehat i - 3\widehat j + 2\widehat k$. Then the number of vectors $\overrightarrow b $ such that $\overrightarrow b \times \overrightarrow c = \overrightarrow a $ and $|\overrightarrow b | \in $ {1, 2, ........, 10} is :

1
2
3
4

logo

$L_1:;\vec r=(2+\lambda),\hat i+(1-3\lambda),\hat j+(3+4\lambda),\hat k,;\lambda\in\mathbb R$ $L_2:;\vec r=2(1+\mu),\hat i+3(1+\mu),\hat j+(5+\mu),\hat k,;\mu\in\mathbb R$ is $\dfrac{m}{\sqrt{n}}$, where $\gcd(m,n)=1$, then the value of $m+n$ equals

1
2
3
4

logo

Let $O$ be the origin and the position vectors of $A$ and $B$ be $\vec{A} = 2\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{B} = 2\hat{i} + 4\hat{j} + 4\hat{k}$ respectively. If the internal bisector of $\angle AOB$ meets the line $AB$ at $C$, then the length of $OC$ is:

1
2
3
4

logo

The vector $\vec{a}=-\hat{i}+2\hat{j}+\hat{k}$ is rotated through a right angle, passing through the $y$-axis in its way and the resulting vector is $\vec{b}$. Then the projection of $3\vec{a}+\sqrt{2}\,\vec{b}$ on $\vec{c}=5\hat{i}+4\hat{j}+3\hat{k}$ is:

1
2
3
4

logo

If a point $R(4,y,z)$ lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$, then the distance of $R$ from the origin is:

1
2
3
4

logo

Let $\vec{a}=4\hat{i}-\hat{j}+\hat{k}$, $\vec{b}=11\hat{i}-\hat{j}+\hat{k}$ and $\vec{c}$ be a vector such that $(\vec{a}+\vec{b})\times\vec{c}=\vec{c}\times(-2\vec{a}+3\vec{b})$. If $(2\vec{a}+3\vec{b})\cdot\vec{c}=1670$, then $|\vec{c}|^{2}$ is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...