Let $\vec{a} = \alpha \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \alpha \hat{k}$, $\alpha > 0$.
If the projection of $\vec{a} \times \vec{b}$ on the vector $-\hat{i} + 2\hat{j} - 2\hat{k}$ is $30$, then $\alpha$ is equal to:
Let $\overrightarrow a = \widehat i + \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + 2\widehat j + 3\widehat k$. Then the vector product $\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\left( {\overrightarrow a \times \left( {\left( {\overrightarrow a - \overrightarrow b } \right) \times \overrightarrow b } \right)} \right) \times \overrightarrow b } \right)$ is equal to :
Let $P$ be the point of intersection of the lines
$\dfrac{x-2}{1}=\dfrac{y-4}{5}=\dfrac{z-2}{1}$ and $\dfrac{x-3}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{2}$.
Then, the shortest distance of $P$ from the line $4x=2y=z$ is:
If $\vec{\alpha} = (\lambda - 2)\vec{a} + \vec{b}$ and $\vec{\beta} = (4\lambda - 2)\vec{a} + 3\vec{b}$ be two given vectors $\vec{a}$ and $\vec{b}$ which are non-collinear, then the value of $\lambda$ for which vectors $\vec{\alpha}$ and $\vec{\beta}$ are collinear, is –
Let $\vec a=5\hat{\imath}-\hat{\jmath}-3\hat{k}$ and $\vec b=\hat{\imath}+3\hat{\jmath}+5\hat{k}$ be two vectors. Then which one of the following statements is TRUE?
Let the point $A$ divide the line segment joining the points $P(-1,-1,2)$ and $Q(5,5,10)$ internally in the ratio $r:1\ (r>0)$. If $O$ is the origin and $(\overrightarrow{OQ}\cdot\overrightarrow{OA})-\dfrac{1}{5}\lvert\overrightarrow{OP}\times\overrightarrow{OA}\rvert^{2}=10$, then the value of $r$ is:
If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :
The distance of the line
$\displaystyle \frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$
from the point $(1,4,0)$ along the line
$\displaystyle \frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is:
Let \(\vec a = 2\hat i - 7\hat j + 5\hat k\), \(\vec b = \hat i + \hat k\) and \(\vec c = \hat i + 2\hat j - 3\hat k\) be three given vectors.
If \(\vec r\) is a vector such that \(\vec r \times \vec a = \vec c \times \vec a\) and \(\vec r \cdot \vec b = 0\), then \(|\vec r|\) is equal to: