JEE MAIN Vector Previous Year Questions (PYQs) – Page 1 of 17

JEE MAIN Vector Previous Year Questions (PYQs) – Page 1 of 17

A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
logo

Let $\vec{a} = \alpha \hat{i} + \hat{j} - \hat{k}$ and $\vec{b} = 2\hat{i} + \hat{j} - \alpha \hat{k}$, $\alpha > 0$. If the projection of $\vec{a} \times \vec{b}$ on the vector $-\hat{i} + 2\hat{j} - 2\hat{k}$ is $30$, then $\alpha$ is equal to:

1
2
3
4

logo

Let $\overrightarrow a = \widehat i + \widehat j + 2\widehat k$ and $\overrightarrow b = - \widehat i + 2\widehat j + 3\widehat k$. Then the vector product $\left( {\overrightarrow a + \overrightarrow b } \right) \times \left( {\left( {\overrightarrow a \times \left( {\left( {\overrightarrow a - \overrightarrow b } \right) \times \overrightarrow b } \right)} \right) \times \overrightarrow b } \right)$ is equal to :

1
2
3
4

logo

Let $P$ be the point of intersection of the lines $\dfrac{x-2}{1}=\dfrac{y-4}{5}=\dfrac{z-2}{1}$ and $\dfrac{x-3}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{2}$. Then, the shortest distance of $P$ from the line $4x=2y=z$ is:

1
2
3
4

logo

If $\vec{\alpha} = (\lambda - 2)\vec{a} + \vec{b}$ and $\vec{\beta} = (4\lambda - 2)\vec{a} + 3\vec{b}$ be two given vectors $\vec{a}$ and $\vec{b}$ which are non-collinear, then the value of $\lambda$ for which vectors $\vec{\alpha}$ and $\vec{\beta}$ are collinear, is –

1
2
3
4

logo

Let $\vec a=5\hat{\imath}-\hat{\jmath}-3\hat{k}$ and $\vec b=\hat{\imath}+3\hat{\jmath}+5\hat{k}$ be two vectors. Then which one of the following statements is TRUE?

1
2
3
4

logo

Let the point $A$ divide the line segment joining the points $P(-1,-1,2)$ and $Q(5,5,10)$ internally in the ratio $r:1\ (r>0)$. If $O$ is the origin and $(\overrightarrow{OQ}\cdot\overrightarrow{OA})-\dfrac{1}{5}\lvert\overrightarrow{OP}\times\overrightarrow{OA}\rvert^{2}=10$, then the value of $r$ is:

1
2
3
4

logo

If the square of the shortest distance between the lines $\frac{x-2}{1}=\frac{y-1}{2}=\frac{z+3}{-3}$ and $\frac{x+1}{2}=\frac{y+3}{4}=\frac{z+5}{-5}$ is $\frac{m}{n}$, where $m$, $n$ are coprime numbers, then $m+n$ is equal to :

1
2
3
4

logo

A value of $\theta \in \left( {0,{\pi \over 3}} \right)$, for which
$\left| {\matrix{ {1 + {{\cos }^2}\theta } & {{{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {1 + {{\sin }^2}\theta } & {4\cos 6\theta } \cr {{{\cos }^2}\theta } & {{{\sin }^2}\theta } & {1 + 4\cos 6\theta } \cr } } \right| = 0$, is :

1
2
3
4

logo

The distance of the line $\displaystyle \frac{x-2}{2}=\frac{y-6}{3}=\frac{z-3}{4}$ from the point $(1,4,0)$ along the line $\displaystyle \frac{x}{1}=\frac{y-2}{2}=\frac{z+3}{3}$ is:

1
2
3
4

logo

Let \(\vec a = 2\hat i - 7\hat j + 5\hat k\), \(\vec b = \hat i + \hat k\) and \(\vec c = \hat i + 2\hat j - 3\hat k\) be three given vectors. If \(\vec r\) is a vector such that \(\vec r \times \vec a = \vec c \times \vec a\) and \(\vec r \cdot \vec b = 0\), then \(|\vec r|\) is equal to:

1
2
3
4

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

JEE MAIN


Online Test Series,
Information About Examination,
Syllabus, Notification
and More.

Click Here to
View More

Ask Your Question or Put Your Review.

loading...