Qus : 1
1
If $\sqrt{x+y}+\sqrt{\,y-x\,}=\sqrt2$, then $\dfrac{d^{2}y}{dx^{2}}$ equals …
✓ Solution
Let $a=\sqrt{x+y},\,b=\sqrt{y-x}$. $(a+b)^2=2 \Rightarrow y+\sqrt{y^{2}-x^{2}}=1$.
Differentiate: $y'+\dfrac{yy'-x}{\sqrt{y^{2}-x^{2}}}=0$.
But $\sqrt{y^{2}-x^{2}}=1-y$ from above ⇒ $y'=x$ ⇒ $y''=1$.
Qus : 2
3
If $\sqrt{x + y} + \sqrt{y - x} = \sqrt{2}a$, then $\dfrac{d^2 y}{d x^2}$ is equal to …
✓ Solution
Differentiate both sides:
$\dfrac{1}{2\sqrt{x + y}}(1 + \dfrac{dy}{dx}) + \dfrac{1}{2\sqrt{y - x}}(\dfrac{dy}{dx} - 1) = 0$.
Simplify to get $\dfrac{dy}{dx} = \dfrac{\sqrt{y - x} - \sqrt{x + y}}{\sqrt{y - x} + \sqrt{x + y}}$.
Differentiate again and substitute from the given equation $\sqrt{x + y} + \sqrt{y - x} = \sqrt{2}a$, we get
$\dfrac{d^2y}{dx^2} = \dfrac{2}{a}$.
Qus : 3
4
If $\sec!\left(\dfrac{x-y}{x+y}\right)=a$, then $\dfrac{dy}{dx}$ is
✓ Solution
Let $u=\dfrac{x-y}{x+y}$. Since $\sec u=a$ (constant), $u' = 0$.
$\displaystyle 0=\frac{d}{dx}!\left(\frac{x-y}{x+y}\right)=\frac{(1-y')(x+y)-(x-y)(1+y')}{(x+y)^2}$
$\Rightarrow 2y-2xy'=0\Rightarrow y'=\dfrac{y}{x}.$
Qus : 4
3
If $x^{,y}y^{,x}=16$, then $\left.\dfrac{dy}{dx}\right|_{(2,2)}$ is
✓ Solution
$\ln(x^{y}y^{x})=y\ln x+x\ln y=\ln16$
$\Rightarrow y'(\ln x+\tfrac{x}{y})+(\tfrac{y}{x}+\ln y)=0$
At $(2,2)$: $y'=\dfrac{-,(1+\ln2)}{,\ln2+1}=-1.$