Aspire Study
Log in
Sign Up
Home
Exams
Library
Online Forms
Feedback
Jamia Millia Islamia Logarithms And Indices Previous Year Questions (PYQs)
Light
Jamia Millia Islamia Logarithms And Indices Previous Year Questions (PYQs)
A Place for Latest Exam wise Questions, Videos, Previous Year Papers,
Study Stuff for MCA Examinations
Jamia Millia Islamia
Previous Year Questions
Jamia Millia Islamia
Previous Year Questions
Jamia Millia Islamia
Qus : 1
4
For what value of $x$, the $\log_2(5·2^x+1)$, $\log_4(2^{1-x}+1)$, and 1 are in A.P.?
1
$\log_2 5$
2
$\log_5 2$
3
$1+\log_2 5$
4
$1-\log_2 5$
View Solution
Video Solution
Discussion
✓
Solution
Let $a=\log_2(5·2^x+1)$, $b=\log_4(2^{1-x}+1)$, $c=1$ For A.P.: $2b=a+c$ Simplify using $\log_4 y = \frac{1}{2}\log_2 y$ After algebra → $x = 1 - \log_2 5$
Qus : 2
1
Let n be a positive decimal integer. The number of digits in n is equal to
1
$\lfloor\log_{10} n\rfloor+1$
2
$\lfloor\log_{10} n\rfloor+2$
3
$\lfloor\log_{10} n\rfloor$
4
$\lfloor\log_{10} n^{}\rfloor$
View Solution
Video Solution
Discussion
✓
Solution
For any integer $n\ge1$, digits $= \lfloor\log_{10} n\rfloor+1$.
Qus : 3
2
If $1,\ \log_{9}!\left(3^{,1-x}+2\right)$ and $\log_{3}!\left(4\cdot 3^{x}-1\right)$ are in A.P., then $x$ equals
1
$\log_{4}2$
2
$1-\log_{3}4$
3
$1-\log_{4}3$
4
$\log_{4}3$
View Solution
Video Solution
Discussion
✓
Solution
A.P. $\Rightarrow 2\cdot\log_{9}(3^{1-x}+2)=1+\log_{3}(4\cdot 3^x-1)$. Since $\log_{9}y=\dfrac12\log_{3}y$, we get $\log_{3}(3^{1-x}+2)=1+\log_{3}(4\cdot 3^x-1)=\log_{3}!\big(3(4\cdot 3^x-1)\big)$. Hence $3^{1-x}+2=12\cdot 3^{x}-3$. Put $t=3^x$: $\dfrac{3}{t}+2=12t-3$. $\Rightarrow 12t^2-5t-3=0 \Rightarrow t=\dfrac{3}{4}$ (positive root). So $3^x=\dfrac{3}{4}\Rightarrow x=\log_{3}!\left(\dfrac{3}{4}\right)=1-\log_{3}4$.
Qus : 4
1
The product of two binary numbers $00001101_2$ and $00001111_2$ is:
1
$11000011_2$
2
$0110011_2$
3
$00001101_2$
4
$00010010_2$
View Solution
Video Solution
Discussion
✓
Solution
$00001101_2 = 13_{10}$ $00001111_2 = 15_{10}$ Product in decimal $= 13 \times 15 = 195$ Now convert $195_{10}$ to binary: $195 = 128 + 64 + 3 = 11000011_2$
Qus : 5
3
The remainder when $27^{40}$ is divided by $12$ is:
1
3
2
7
3
9
4
11
View Solution
Video Solution
Discussion
✓
Solution
We use modulo properties: $27 \equiv 3 \pmod{12}$ $\Rightarrow 27^{40} \equiv 3^{40} \pmod{12}$ Now, $3^1 \equiv 3$, $3^2 \equiv 9$, $3^3 \equiv 3$, $3^4 \equiv 9$, pattern repeats every 2 powers. So, for even power $40$, remainder = $9$.
Jamia Millia Islamia
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Click Here to
View More
Jamia Millia Islamia
Online Test Series,
Information About Examination,
Syllabus, Notification
and More.
Click Here to
View More
×
JOIN COURSE NOW
Ask Your Question or Put Your Review.
Add Comment
Please provide more information - at least 10 characters
Add Comment
×
Info.