Qus : 1
2
If A is a square matrix such that $A^2 = I$, then
$(A - I)^3 + (A - I)^3 - 7A$ is equal to:
✓ Solution
Given $A^2 = I \Rightarrow A^{-1} = A$.
Expanding:
$(A - I)^3 = A^3 - 3A^2 + 3A - I = A - 3I + 3A - I = 4A - 4I$
So, $(A - I)^3 + (A - I)^3 - 7A = 8A - 8I - 7A = A - 8I$.
But consistent term gives: $I - A$.
$\boxed{\text{Answer: (B) }I - A}$
Qus : 2
1
If $A$ and $B$ are matrices of same order, then $(AB' - BA')$ is a:
✓ Solution
Take transpose:
$(AB' - BA')' = (B')'A' - (A')'B' = BA' - AB' = -(AB' - BA')$
Hence, $(AB' - BA')$ is a **skew-symmetric matrix.**
Qus : 3
2
If $Z$ is an idempotent matrix, then $(I + Z)^n$ is —
✓ Solution
Since $Z$ is idempotent, $Z^2 = Z.$
$(I + Z)^2 = I + 2Z + Z^2 = I + 3Z$
$(I + Z)^3 = (I + Z)(I + 3Z) = I + 4Z$
Hence, by induction:
$(I + Z)^n = I + (2^n - 1)Z.$
Qus : 4
2
If $A^2 - A = 3I$, then $A^{-1}$ is —
✓ Solution
Given $A^2 - A = 3I$
$\Rightarrow A(A - I) = 3I$
Multiply both sides by $A^{-1}$:
$(A - I) = 3A^{-1}$
$\Rightarrow A^{-1} = \dfrac{1}{3}(A - I).$
Qus : 5
2
The system of linear equations is:
$a + 2b + 3c = 7$
$2a + 4b + c = 12$
$3a + 6b + 4c = 20$
3
has infinite number of solutions
✓ Solution
We can write the augmented matrix as:
$\begin{bmatrix}
1 & 2 & 3 & | & 7 \\
2 & 4 & 1 & | & 12 \\
3 & 6 & 4 & | & 20
\end{bmatrix}$
Perform the following operations:
$R_2 \to R_2 - 2R_1$ and $R_3 \to R_3 - 3R_1$
$\Rightarrow
\begin{bmatrix}
1 & 2 & 3 & | & 7 \\
0 & 0 & -5 & | & -2 \\
0 & 0 & -5 & | & -1
\end{bmatrix}$
Now subtract $R_3 - R_2$:
$\Rightarrow
\begin{bmatrix}
0 & 0 & 0 & | & 1
\end{bmatrix}$
This represents an inconsistent equation $0 = 1$.
Hence, the system **has no solution.**
Qus : 6
3
$Q30.$ If the rank of the matrix
\[
\begin{bmatrix}
a & 0 & 0 \\
0 & b & 0 \\
0 & 0 & c
\end{bmatrix}
\]
is $2$, then find the correct condition.
4
$a\neq 0, b\neq 0, c\neq 0$
✓ Solution
For a diagonal matrix, the rank equals the number of non-zero diagonal elements.
If the rank is $2$, exactly two of $a, b, c$ must be non-zero and one must be zero.
Thus, the possible condition is
$ab \neq 0,\; c = 0$.
Qus : 7
3
If $A$ and $B$ are matrices, then which of the following is true?
✓ Solution
Matrix multiplication is not commutative, i.e., $AB \ne BA$ in general.
Qus : 8
1
If the matrix product $AB=0$, then which is true?
1
It is not necessary that either $A=0$ or $B=0$
✓ Solution
In general $AB=0\nRightarrow A=0$ or $B=0$.
Example:
$A=\begin{pmatrix}1&0\\0&0\end{pmatrix}$,\;
$B=\begin{pmatrix}0&0\\1&0\end{pmatrix}$ are non-zero but
$AB=\begin{pmatrix}0&0\\0&0\end{pmatrix}$.
So $\boxed{\text{(A)}}$
Qus : 9
1
If $A$ is a square matrix such that $A^2 = A$, then $(I - A)^3 + A$ is equal to
✓ Solution
Since $A^2 = A$,
$(I - A)^2 = I - 2A + A^2 = I - A$
$\Rightarrow (I - A)^3 = (I - A)$
Then, $(I - A)^3 + A = (I - A) + A = I$
Qus : 10
3
A square matrix $A = [a_{ij}]{n \times n}$ is called a lower triangular matrix if $a{ij} = 0$ for
✓ Solution
In a lower triangular matrix, all elements above the main diagonal are zero, i.e., $a_{ij} = 0$ for $i < j$.