Aspire Faculty ID #13079 · Topic: JEE Main 2022 (27 July Morning Shift) · Just now
JEE Main 2022 (27 July Morning Shift)

$ \text{Let } f:\mathbb{R}\to\mathbb{R} \text{ be a function defined as } f(x)=a\sin\!\left(\frac{\pi\lfloor x\rfloor}{2}\right)+\lfloor 2-x\rfloor,\ a\in\mathbb{R}, \text{ where } \lfloor t\rfloor \text{ is the greatest integer } \le t. \text{ If } \lim_{x\to -1} f(x) \text{ exists, then the value of } \int_{0}^{4} f(x)\,dx \text{ is equal to:}$

Previous 10 Questions — JEE Main 2022 (27 July Morning Shift)

Nearest first

Next 10 Questions — JEE Main 2022 (27 July Morning Shift)

Ascending by ID
Ask Your Question or Put Your Review.

loading...