If $y=y(x)$ solves the differential equation $\dfrac{dy}{dx}+2y=\sin(2x)$ with $y(0)=\dfrac{3}{4}$, then $y!\left(\dfrac{\pi}{8}\right)$ is:
Previous 10 Questions — JEE Main 2024 (5 April Morning Shift)
Nearest first
1
2
3
4
5
6
7
8
9
10
Suppose $\theta\in\left[0,\tfrac{\pi}{4}\right]$ is a solution of $4\cos\theta-3\sin\theta=1$. Then $\cos\theta$ is:
Topic: JEE Main 2024 (5 April Morning Shift)
For $f(x)=\sin x+3x-\dfrac{2}{\pi}(x^{2}+x)$, where $x\in\left[0,\tfrac{\pi}{2}\right]$, consider:
(I) $f$ is increasin…
Topic: JEE Main 2024 (5 April Morning Shift)
Suppose $\theta\in[0,\tfrac{\pi}{4}]$ is a solution of $4\cos\theta-3\sin\theta=1$. Then $\cos\theta$ is:
Topic: JEE Main 2024 (5 April Morning Shift)
The value of $\int_{-\pi}^{\pi}\dfrac{2y(1+\sin y)}{1+\cos^{2}y},dy$ is:
Topic: JEE Main 2024 (5 April Morning Shift)
Let the line $2x+3y-k=0,\ k>0$ intersect the $x$-axis and $y$-axis at points $A$ and $B$, respectively. If the circle h…
Topic: JEE Main 2024 (5 April Morning Shift)
If the function $f(x)=\dfrac{\sin 3x+\alpha\sin x-\beta\cos 3x}{x^{3}},; x\in\mathbb{R},$ is continuous at $x=0$, then …
Topic: JEE Main 2024 (5 April Morning Shift)
Let $d$ be the distance of the point of intersection of the lines $\dfrac{x+6}{3}=\dfrac{y}{2}=\dfrac{z+1}{1}$ and $\df…
Topic: JEE Main 2024 (5 April Morning Shift)
If $\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+\cdots+\dfrac{1}{\sqrt{99}+\sqrt{100}}=m$ and $\dfrac{1}{…
Topic: JEE Main 2024 (5 April Morning Shift)
The integral $\displaystyle \int_{0}^{\pi/4}\frac{136\sin x}{3\sin x+5\cos x},dx$ is equal to:
Topic: JEE Main 2024 (5 April Morning Shift)
If the system
$11x+y+\lambda z=-5,\quad 2x+3y+5z=3,\quad 8x-19y-39z=\mu$
has infinitely many solutions, then $\lambda^{…
Topic: JEE Main 2024 (5 April Morning Shift)